
ARTICLE IN PRESS
0923-5965/$ - se

doi:10.1016/j.im

�Correspondi
E-mail addr

wctsai@cic.org.
Signal Processing: Image Communication 19 (2004) 975–992

www.elsevier.com/locate/image
A simple and efficient block motion estimation algorithm
based on full-search array architecture

Shih-Yu Huanga,�, Wei-Chang Tsaib

aDepartment of Computer Science and Information Engineering, Ming Chuan University, 5 Teh-Ming Rd., Gwei Shan District,

Taoyuan Country 333, Taiwan
bNational Chip Implementation Center, National Applied Research Laboratories, 1F, No. 1, Prosperity RD. I,

Science-Based Industrial Park, Hisnchu 300, Taiwan

Received 25 February 2004
Abstract

This paper first presents an array structure using �1 full-search (FS) architecture as the search engine of block

motion estimation which takes advantage of the design regularity of FS. An efficient algorithm named modified

gradient-descent search (MGDS) is then introduced based on the proposed architecture. MGDS utilizes an adaptive

computation distribution mechanism to efficiently allocate computation of the employed �1 FS array to blocks or

frames of video sequences. Experimental results indicate that MGDS uniformly achieves a higher quality than FS by an

amount that is dependent on motion activities of sequences.

r 2004 Elsevier B.V. All rights reserved.

Keywords: Motion estimation; Block matching; Video coding
1. Introduction

Video compression standards such as ISO
MPEG-1, -2, and -4, and ITU-T H.261, 262, 263,
and 264 [4–6,13] use block-based motion compen-
sation techniques to eliminate temporal redun-
dancy in video sequences. The block matching
algorithm (BMA) is extensively employed to
e front matter r 2004 Elsevier B.V. All rights reserve

age.2004.08.001

ng author. Tel.: +886-3-3507001.

esses: syhuang@mcu.edu.tw (S.-Y. Huang),

tw (W.-C. Tsai).
extract motion vectors (MVs). Typically, the
algorithm consumes 60–80% of the total compu-
tation in a video encoder, and it strongly affects
the visual quality at a given bit-rate. The regular
data flow of full-search (FS) BMA makes it
especially amenable to hardware implementation.
Many efficient hardware designs have been pro-
posed for FS in recent decades [1,3,8,10,12], with
many focusing on data reuse. However, FS—a
brute-force algorithm—does not utilize informa-
tion on motion activity in video sequences, and
hence it is possible to improve the performance of
d.

www.elsevier.com/locate/image

ARTICLE IN PRESS

S.-Y. Huang, W.-C. Tsai / Signal Processing: Image Communication 19 (2004) 975–992976
FS hardware designs by considering this issue.
Based on the center-biased characteristics of MVs
[2], several fast BMAs have been developed,
including the three-step search (TSS) [7], the new
TSS (NTSS) [9], the block-based gradient-descent
search (GDS) [11], the diamond search (DS) [16],
and PMVFAST [14]. Although these fast BMAs
greatly reduce the computation required for
motion estimation, their irregular search patterns
result in complicated hardware design.
An algorithmic and architectural codesign of a

motion estimation engine was proposed in 2002
[15]. Four rules were considered in the design of
BMAs. First, searching points should be chosen in
the direction of the current best improvement for
faster convergence to an optimum solution, i.e.,
GDS. Second, the spatial and temporal correlation
of MVs should be exploited to determine the initial
searching point. Third, searching points should be
examined in a pattern around the initial position
so as to exploit the center-biased distribution of
MVs. Finally, the search should stop as soon as
possible once the matching is good enough. Based
on the above principles, a directional squared-
search (DSS) algorithm and a pipelined parallel
architecture are presented.
The core of DSS follows the first rule, as shown

in Fig.1. A square 3� 3 search window of nine
points is initially applied to the search area with
the center recommended by the second rule. The
algorithm stops if the center of the 3� 3 window is
the position of the best matching point; otherwise,
Case1: the corner point

Case2: the edge point

Initial

Case3: the center point

Stop

GDS

MGDS

GDSMGDS GDS

MGz

Fig. 1. Structure of GDS and MGDS.
the search center is moved to the best matching
point. Only neighboring points of the center
position are investigated in the next search step.
If the best matching point is in the corner, then five
additional points should be checked, whereas three
points must be checked when the best matching
point is an edge point. The above process is
repeated until the center of the window is the
position of the best matching point.
Typically, the initial search step of GDS can be

considered to be a special case of FS with a �1
search range, and it can be efficiently implemented
in many hardware designs. However, the data flow
when investigating neighboring points during
subsequent searches is not as regular as during
the initial step, and hence special hardware is
required [15]. Actually, FS is the best choice for
motion estimation from the viewpoint of hardware
implementation. The basic idea of this paper, as
shown in Fig. 1, is to modify the searching points
employed by the subsequent searches of GDS such
that they can also be performed by �1 FS without
redundant computation. Irrespective of whether
the best matching point is located at a corner or
edge, the modified GDS (MGDS) successively
applies a square 3� 3 search window of new nine
points.
The major advantage of the proposed MGDS

scheme is that all operations can be performed by
�1 FS. Thus, we can employ an array of �1 FSs as
the search engine of motion estimation. This
feature is especially useful for personal visual
communication because types of handheld devices
that are now being used are various, such as PDAs
and handsets. The large variation in the computa-
tion power amongst these heterogeneous devices
makes conventional BMAs impractical, since their
parameters cannot be tuned automatically accord-
ing to the available computational power. In
contrast, the computational power of the search
engine can be easily updated by changing the
number of elements in the FS array. To efficiently
utilize the available computation of the search
engine, an adaptive computation distribution
mechanism is further presented in this paper.
Experimental results indicate that MGDS can
uniformly achieve a quality improvement over
original FS under the same computation. That is,

ARTICLE IN PRESS

S.-Y. Huang, W.-C. Tsai / Signal Processing: Image Communication 19 (2004) 975–992 977
the computation distortion (CD) performance of
FS hardware designs can be improved when they
are assembled into the proposed array structure
and cooperate in the manner of MGDS.
The remainder of this paper is organized as

follows: Section 2 describes the proposed MGDS
algorithm, experimental results are given in Sec-
tion 3, Section 4 embeds MGDS into the FS array
architecture, and some conclusions are drawn in
Section 5.
1

1

1

1 1 1

1

11

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

2

2

2

2 2 2

2

22

3

3

3

3 3 3

3

33

7
6

5

4

3
2
1
0

-1
-2
-3

-4
-5
-6
-7

(a)

1

1

1

1 1 1

1

11

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

2

2

2

2 2 2

2

22

7
6

5

4

3
2
1
0

-1
-2
-3

-4
-5
-6
-7

(b)

Fig. 2. (a), (b) Examples to illustrate the MGDS algorithm.
2. Modified gradient-descent search algorithm

Current video codec predicts MV of a given
macroblock (MB) based on the MVs of neighbor-
ing MBs for efficient entropy coding. However, the
search center, ðxc; ycÞ; of the current MB can only
be set as (0,0) for parallel extracting MV in
MGDS. A square 3� 3 search window of nine
points is then applied to the initial center, i.e., (0,
0). In MGDS, distortion is measured by the sum of
absolute differences (SAD) due to its lower
computation cost. Similar to GDS, MGDS im-
mediately stops if the center is the position of the
best matching point; otherwise a series of subse-
quent searches will be performed toward the best
matching point. Unlike GDS, a square 3� 3
search window of nine points is applied succes-
sively irrespective of whether the best matching
point is located at a corner or edge. The center of
the next search (xn; yn) is generated by

ðxn; ynÞ ¼ ðxc; ycÞ þ ð3� ic; 3� jcÞ; (1)

where ðic; jcÞ is the displacement of the best
matching point. Fig. 1 shows the demonstrative
structure of subsequent searches in MGDS.
In MGDS, three additional stopping conditions

are employed to reduce the computation. Let the
immediately preceding search center and the SAD
of the best matching point be ðxp; yp) and SADp;
respectively. It is pointless examining the searched
area if the next search center (xn; yn) is equal to one
of the previous search centers. For simplicity, only
the immediately preceding search center (xp; yp) is
checked in MGDS. Therefore, MGDS stops if
ðxn; ynÞ ¼ ðxp; ypÞ: The second stopping condition
is SADppSADc; where SADc is the best SAD of
the current MB. This condition implies that the
optimum occurs at the best matching point of the
previous nine points. The third stopping condition
is SADcpTH; where TH is the given threshold.
This condition indicates that the current SAD is
below an acceptable threshold.
Fig. 2(a) shows an example to illustrate the

proposed MGDS. Suppose the value of TH is 350.
MGDS first examines nine searching points
labeled as 1 in the figure, resulting in (1, 0) and
500 as the displacement and SAD of the best
matching point, respectively. Since the best match-
ing point is not at the center and the best SAD is

ARTICLE IN PRESS

MB(1) MB(2) MB(3) MB(1)

MB(1)

MB(1)

MB(2)

MB(2)

MB(3)

±1 FS(1) ±1 FS(2)Memory Module

1st cycle

2nd cycle

3rd cycle

Fig. 3. Example of MB scheduling scheme for parallel full

searching.

S.-Y. Huang, W.-C. Tsai / Signal Processing: Image Communication 19 (2004) 975–992978
larger than TH (i.e., 5004350), the second search
center (3,0) is derived using Eq. (1) and nine
searching points depicted as 2 in the figure are
then checked, resulting in (1,1) as the displacement
and 400 as the SAD. Similarly, nine searching
points labeled as 3 in the figure with the search
center (6,3) are examined because the displacement
of the best matching point is not (0,0), the current
SAD is smaller than that of the previous (i.e.,
400o500), the next search center (6,3) is not
examined and the best SAD is still larger than TH
(i.e., 4004350) in this situation. After the third �1
FS, (ic; jcÞ ¼ ð�1; 0Þ and SADc ¼ 300: The algo-
rithm then stops because the current best SAD is
below TH (i.e., 300o350). Therefore, the MV of
this MB is (5,3) since the current SAD is smaller
than the previous value. Another example for
explaining MGDS is shown in Fig. 2(b). The
processing of this example is initially the same as
for the above example, except the resulting
displacement of the second �1 FS is ð�1; 0Þ:
MGDS stops because the next search center is
ð0; 0Þ ¼ ð3; 0Þ þ ð3��1; 3� 0Þ which has already
been examined by the first �1 FS. Thus, (2,0) is the
final MV.

2.1. Macroblock scheduling for parallel �1 full

searching

As mentioned, an array of �1 FSs is utilized to
be the search engine of motion estimation. Thus,
these �1 FSs can work in parallel to extract MVs.
In MGDS, the MBs of a frame are coded in the
scan-line order. Once a �1 FS is idle, MGDS
greedily schedules the next MB to the idled �1 FS.
The MB will be processed by the scheduled �1 FS
until one of the stopping conditions is satisfied. Of
course, such parallelism prevent using prediction
of the initial MV, which is thus forced to be (0,0).
The loss of not being able to use initial MV
prediction will be discussed in Section 3.
Fig. 3 demonstrates an example of the above

scheduling scheme. Assume that the search engine
has two �1 FSs, denoted as FS(1) and FS(2), and
that the MBs in Fig. 2(a) and (b), denoted as
MB(1) and MB(2), are the first two MBs to be
coded. Each �1 FS can process a square 3� 3
search window of nine points in one cycle. Since
the two �1 FSs are initially all idle, MGDS
schedules FS(1) to code MB(1) and FS(2) to code
MB(2) in the first cycle. After the first cycle, all
stopping conditions are false for MB(1) and MB(2)
so that MB(1) and MB(2) are still to be processed
by FS(1) and FS(2) in the second cycle. At the end
of the second cycle, MB(2) is stopped but MB(1) is
not. Therefore, MGDS fetches the next MB to
FS(2) and MB(1) is still coded by FS(1) in the third
cycle.
2.2. Computation distribution

In general, a codec performs well for videos
whose required computation is less than the
available computational power. However, the
quality of the coded videos will be degraded when
the computational power is insufficient to process
all the video MBs, such as when input videos
contain complex motion. In fact, the quality of
coded videos can be improved if the computa-
tional power of a codec can be efficiently
controlled. This paper proposes two techniques
to distribute computational resources.
2.2.1. Explicit computation distribution

The first one is an explicit approach which
allocates an upper bound of computation for each
MB to control the searches of MGDS. As
elsewhere in this paper, the size of computation
is in units of searching points. Suppose that SPa

c

and SPp
c are the numbers of searching points

allocated and performed by MGDS of current
MB, respectively. This MB should be stopped
if the allocated computation is exhausted, i.e.,

ARTICLE IN PRESS

S.-Y. Huang, W.-C. Tsai / Signal Processing: Image Communication 19 (2004) 975–992 979
SPp
cXSPa

c : The method to calculate SPa
c is pre-

sented in the following.
For a frame with N MBs, let T be the total

searching points per frame of the employed �1 FS
array. If the index of the current MB is c; the
numbers of uncoded MBs and unused searching
points are N � c þ 1 and T �

Pc�1
i¼1 SP

p
i ; respec-

tively. The simplest method to dynamically reg-
ulate the amount of computation is by averaging,
for which the computation allocated to the current
MB is

SPa
c ¼ T �

Xc�1
i¼1

SP
p
i

 !,
ðN � c þ 1Þ: (2)

In general, the video quality is higher when the
allocated computation is more precise. A draw-
back of averaging is that uncoded MBs are all
classified into the same type because searching
points are equally distributed to them, whereas
every uncoded MB requires different computation
to extract MV since the corresponding motion
activity varies (e.g., little computation is needed
for background MBs). A more efficient allocation
considers the motion activity of MBs, but it is
difficult to determine the motion activity of
uncoded MBs because they are not examined in
this period. In this paper, uncoded MBs are simply
classified into two types, background and non-
background, and unused computation is only
distributed to uncoded nonbackground MBs.
Let Nb

c be the number of uncoded back-
ground MBs in the current frame. Nb

c is initially
predicted by the number of MBs with MV ¼ ð0; 0Þ
in the reference frame because successive frames
are very similar. Once MGDS generates a (0,0)
MV, Nb

c is updated according to Nb
c ¼ Nb

c � 1:
The computation allocated to the current MB is
modified as

SPa
c ¼ T �

Xc�1
i¼1

SP
p
i

 !,
ðN � c þ 1� Nb

c Þ: (3)

Computation is not the only constraint for
stopping in MGDS, since the current MB will also
be stopped even when the allocated computation is
not exhausted. The unused computation will be
accumulated to code uncoded MBs. Hence, the
computation allocated to an MB will tend to
increase, which is biased against the earlier MBs.
To overcome this problem, a weighting factor
aðaX1Þ is used to adjust the value of SPa

c :

SPa
c ¼ T �

Xc�1
i¼1

SP
p
i

 !" ,
ðN � c þ 1� Nb

c Þ

#
� a:

(4)

2.2.2. Implicit computation distribution

The third stopping condition of MGDS (i.e.,
SADcpTHÞ is widely used to reduce the complexity
of motion estimation. Actually, the computational
power of a codec can also be implicitly controlled by
adapting the value of TH, since a small stopping
threshold would result in a large number of
searching points and vice versa. The advantage of
the threshold-adaptation approach is that, given a
threshold, the number of searching points computed
for a MB directly depends on the accuracy achieved
by the motion compensation for this MB. The main
challenge of the threshold approach is of course to
adapt the threshold so as to keep the total number of
searching points below the maximum allowable with
the available computational power.
There are usually great similarities among

adjacent frames in videos, and we utilize this
property to adapt the stopping threshold.
Suppose the index of the current frame is k and
its stopping threshold is THk: MGDS uses THk to
code all MBs in this frame. The stopping threshold
of the next frame, THkþ1; is determined by
the results for frame k: The value of the stopping
threshold is decreased by a predefined constant
D if spare computation power is available, i.e.,
ðT �

PN
i¼1SP

p
i Þ40; otherwise, the value is in-

creased by D: This threshold adaptation can be
summarized as

THkþ1 ¼ maxf0;THk � Dg;

if T �
PN
i¼1

SP
p
i

� 	
40;

THkþ1 ¼ THk þ D; otherwise:

8>>><
>>>:

(5)

A suitable value of the stopping threshold is
dependent on the motion activity in video
sequences and the computational power of the
codec. Since we do not have a priori knowledge of
motion activity in video sequences, initially it is

ARTICLE IN PRESS

S.-Y. Huang, W.-C. Tsai / Signal Processing: Image Communication 19 (2004) 975–992980
assumed that the codec has sufficient computa-
tional power for the input videos under considera-
tion. Thus, the initial stopping threshold, i.e., TH0;
is usually set to a small number to achieve higher
output quality. The above assumption is of course
incorrect, and so the value of the stopping thresh-
old is then automatically adjusted using Eq. (5).
The value of D determines the sensitivity of the
threshold-adaptation mechanism: a large D up-
dates the stopping threshold rapidly, and vice
versa. Note that D ¼ 0 is equivalent to disabling
the implicit computation-distribution scheme, i.e.,
each frame is coded by the original MGDS.
3. Experimental results

In this section, we present experimental results
of motion estimation using MGDS, GDS, FS, and
TSS. These algorithms are applied to two SIF
videos (100 frames each of football and tennis
sequences) and two QCIF videos (300 frames each
of foreman and salesman sequences). These
sequences were selected because their motion
characteristics vary considerably, from rapid mo-
tion in the football sequence to slow motion in the
salesman sequence. The frame rates are set at 15
and 5 Hz to simulate faster and slower networking
environments, respectively. The block size is fixed
at 16� 16 pixels, and the coded quality of motion-
compensated videos is measured by the mean
square error (MSE) per pixel, which compares the
motion-compensated image frames with the origi-
nal image frames. A lower MSE indicates a smaller
prediction error, and a higher quality motion-
estimation algorithm.
Table 1

MSE results of MDGS with/without the initial MV prediction

Football

(a) 15 Hz

MDGS without initial MV prediction 451.88

MDGS with initial MV prediction 431.78

(b) 5 Hz

MDGS without initial MV prediction 1129.70

MDGS with initial MV prediction 1126.24
We first discuss the effects of parallelism in
MGDS, which prevents the use of the initial MV
prediction. Because all operations are performed
by �1 FS in MGDS, there are many redundant
computations if MGDS likes a standard video
codec to examine all MV predictors when deter-
mining the best predictor. Accordingly, the initial
search center of the compared MGDS is defined as
the median of three spatially adjacent MVs (left,
top, and top-right). The computation-distribution
schemes are first disabled, on the assumption that
the available computational power of a codec is
sufficient to perform the comparison. Table 1 lists
the MSE results of MGDS with and without the
initial MV prediction. Although the MSE value of
MGDS with an initial MV of (0,0) is worse than
that with the above initial MV, the degradation is
not so much as a standard video codec selects the
best predictor from a set of likely MV predictors.
For the worst-case scenario, i.e., the tennis
sequence with a 5-Hz frame rate, the MSE values
per pixel of MGDS with and without the initial
MV prediction are 552.68 and 588.31, respectively
(i.e., a 6.45% degradation).
We now describe the experimental results

obtained when estimating motion using the
proposed computation-distribution schemes on
MGDS (the MGDS without computation distri-
bution is also implemented for comparison). In
this version, MBs are coded using MGDS until the
given computation power is exhausted, after which
MVs of uncoded MBs are then set to (0,0). To
simulate an environment of heterogeneous devices,
the computational power of the employed codec is
assumed to range from 3000 to 9000 searching
points per frame for the SIF videos, and from 900
Tennis Foreman Salesman

170.24 67.27 8.69

167.81 56.95 8.69

588.31 271.21 44.66

552.68 242.67 44.53

ARTICLE IN PRESS

0

500

1000

1500

2000

2500

3000

3500

3000 5000 7000 9000

Searching point

M
SE

 p
er

 p
ix

el

No computation distribution/ 5-Hz frame rate
Explicit computation distribution/ 5-Hz frame rate
Implicit computation distribution/ 5-Hz frame rate
No computation distribution/ 15-Hz frame rate
Explicit computation distribution/ 15-Hz frame rate
Implicit computation distribution/ 15-Hz frame rate

0

200

400

600

800

1000

1200

1400

1600

3000 5000 7000 9000

Searching point Searching point

M
SE

 p
er

 p
ix

el

No computation distribution/ 5-Hz frame rate

Explicit computation distribution/ 5-Hz frame rate
Implicit computation distribution/ 5-Hz frame rate

No computation distribution/ 15-Hz frame rate
Explicit computation distribution/ 15-Hz frame rate

Implicit computation distribution/ 15-Hz frame rate

0

200

400

600

800

1000

900 1500 2100 2700

Searching point

M
SE

 p
er

 p
ix

el

No computation distribution/ 5-Hz frame rate

Explicit computation distribution/ 5-Hz frame rate
Implicit computation distribution/ 5-Hz frame rate

No computation distribution/ 15-Hz frame rate
Explicit computation distribution/ 15-Hz frame rate

Implicit computation distribution/ 15-Hz frame rate

0

10

20

30

40

50

60

70

80

90

100

900 1500 2100 2700

M
SE

 p
er

 p
ix

el

No computation distribution/ 5-Hz frame rate

Explicit computation distribution/ 5-Hz frame rate

Implicit computation distribution/ 5-Hz frame rate

No computation distribution/ 15-Hz frame rate

Explicit computation distribution/ 15-Hz frame rate

Implicit computation distribution/ 15-Hz frame rate

(a) (c)

(b) (d)

Fig. 4. CD results of MGDS with various computation-distribution schemes.(a) Football sequence. (b) Tennis sequence. (c) Foreman

sequence. (d) Salesman sequence.

S.-Y. Huang, W.-C. Tsai / Signal Processing: Image Communication 19 (2004) 975–992 981
to 2700 searching points per frame for the QCIF
videos. Parameter a for the explicit computation
distribution is set to 1.2, and parameters TH0 and
D for the implicit computation distribution are
fixed at 512 and 256, respectively. Fig. 4 shows the
CD results of these algorithms for codecs with the
above computational powers. In general, the
MGDS with computation-distribution schemes
perform better than the MGDS without computa-
tion distribution, especially for the football se-
quence with a 5-Hz frame rate. The figure
illustrates the benefit of using computation dis-
tribution.
We now analyze the CD performance of the

MGDS with explicit and implicit computation
distribution. An interesting phenomenon is that
the MSE values of MGDS with implicit computa-
tion distribution are lower than those of MGDS
with explicit computation distribution, especially
when the computational power is smaller than
5000 and 1500 searching points per frame for the
SIF and QCIF videos, respectively. In this situa-
tion, the computation is insufficient such that the
computational upper bound of MBs cannot be
predicted precisely in the explicit scheme. How-
ever, the implicit scheme can efficiently distribute
computation since the number of searching points
computed is determined by the accuracy of the
motion compensation. Thus, MGDS with implicit
computation distribution is utilized in the follow-
ing simulations.
We now discuss the effects of TH0 and D on the

implicit computation distribution of MGDS.
Because there are two variables to be analyzed,
D is first fixed to 256. Fig. 5 shows the MSE values
of MGDS with TH0 ranging from 0 to 1536. In

ARTICLE IN PRESS

0

500

1000

1500

2000

2500

3000

3500

4000

0 512 1024 1536

TH0

0 512 1024 1536

TH0

0 512 1024 1536

TH0

0 512 1024 1536

TH0

M
S

E
 p

er
 p

ix
el

M
S

E
 p

er
 p

ix
el

M
S

E
 p

er
 p

ix
el

M
S

E
 p

er
 p

ix
el

3000 searching point/ 5-Hz frame rate

5000 searching point/ 5-Hz frame rate

7000 searching point/ 5-Hz frame rate

9000 searching point/ 5-Hz frame rate

3000 searching point/ 15-Hz frame rate

5000 searching point/ 15-Hz frame rate

7000 searching point/ 15-Hz frame rate

9000 searching point/ 15-Hz frame rate

0

400

800

1200

1600

2000
3000 searching point/ 5-Hz frame rate

5000 searching point/ 5-Hz frame rate

7000 searching point/ 5- Hz frame rate

9000 searching point/ 5-Hz frame rate

3000 searching point/ 15 Hz frame rate

5000 searching point/ 15 Hz frame rate

7000 searching point/ 15 Hz frame rate

9000 searching point/ 15 Hz frame rate

0

200

400

600

800

1000

1200
900 searching point/ 5-Hz frame rate

1500 searching point/ 5-Hz frame rate

2100 searching point/ 5-Hz frame rate

2700 searching point/ 5-Hz frame rate

900 searching point/ 15-Hz frame rate

1500 searching point/ 15-Hz frame rate

2100 searching point/ 15-Hz frame rate

2700 searching point/ 15-Hz frame rate

0

10

20

30

40

50

60

70

80

90

100
900 searching point/ 5-Hz frame rate

1500 searching point/ 5-Hz frame rate

2100 searching point/ 5-Hz frame rate

2700 searching point/ 5-Hz frame rate

900 searching point/ 15-Hz frame rate

1500 searching point/ 15-Hz frame rate

2100 searching point/ 15-Hz frame rate

2700 searching point/ 15-Hz frame rate

(a)

(b)

(c)

(d)

Fig. 5. CD results of implicit computation-distribution scheme with fixed D at 256 and different value of TH0: (a) Football sequence.
(b) Tennis sequence. (c) Foreman sequence. (d) Salesman sequence.

S.-Y. Huang, W.-C. Tsai / Signal Processing: Image Communication 19 (2004) 975–992982
over 95% of tested cases the MSE values are
almost independent of the value of TH0 for a
constant computational power. This is due to the
proposed adaptation mechanism automatically
adjusting the stopping threshold to a suitable
value dependent on the motion activity of videos
and the computational power of the codec.
Fig. 6(a) gives an example of the MSE values
under various values of TH0 for the football
sequence with a 15-Hz frame rate and a computa-
tional power of 3000 searching points per
frame. Although the MSE values differ at the
beginning of the video, they become equal after the
45th frame. The average MSE values per pixel are
619, 618, 615, and 615 when TH0 is 0, 512, 1024,
and 1536, respectively. Another example is
depicted in Fig. 6(b) using the foreman sequence
with a 15-Hz frame rate and a computational
power of 900 searching points per frame. In
this example, MSE values are the same after the
sixth frame.
We now discuss the influence of D on the

implicit computation distribution. Fig. 7 gives the
MSE values of MGDS with D ranging from 128 to
2048 when TH0 is set to 512. Similar to the results
for TH0; in over 90% of tested cases the MSE
values are almost independent of the value of D for
a constant computational power. For the football
sequence with a 15-Hz frame rate and a computa-
tional power of 3000 searching points per frame,
the average MSE values per pixel are 621, 618,
623, 629, 628, and 630 when D is 128, 256, 512,
1024, 1536, and 2048, respectively. One excep-
tional case is the tennis sequence with a 5-Hz

ARTICLE IN PRESS

300

400

500

600

700

800

900

1000

1 11 21 31 41 51 61 71 81 91
Frame number

1 11 21 31 41 51 61 71 81 91
Frame number

M
SE

 p
er

 p
ix

el

TH0 =0

TH0=512

TH0 =1024

TH0 =1536

0

20

40

60

80

100

120

140

160

180

200

M
SE

 p
er

 p
ix

el

TH0 =0

TH0 =512

TH0=1024

TH0 =1536

(a)

(b)

Fig. 6. MSE details of MGDS with fixed D at 256 and various

values of TH0: (a) Football sequence with 15-Hz frame rate

under 3000 searching points per frame. (b) Foreman sequence

with 15-Hz frame rate under 900 searching points per frame.

S.-Y. Huang, W.-C. Tsai / Signal Processing: Image Communication 19 (2004) 975–992 983
frame rate and a computational power of 5000
searching points per frame, where the MSE values
per pixel are 817, 807, 747, 712, 703, and 724
when D is 128, 256, 512, 1024, 1536, and 2048,
respectively. In this case a larger D achieves better
results because a large stopping threshold is
required.
The behaviors of GDS and MGDS are analyzed

below. The proposed implicit computation-distri-
bution mechanism with TH0 ¼ 512 and D ¼ 256 is
also used in GDS for comparison. Fig. 8 shows the
MSE values of GDS and MGDS under various
computational powers. The CD performance of
GDS is generally better than that of MGDS, but
the difference is small. For the football sequence
with a 15-Hz frame rate, the MSE values of GDS
are 210, 175, 161, and 158 for 3000, 5000, 7000,
and 9000 searching points per frame, respectively,
whereas those of MGDS are 227, 192, 179, and
176, respectively. For the salesman sequence with
a 15-Hz frame rate, the MSE values for GDS and
MGDS are virtually identical (the difference is no
greater than 0.5). Although the MSE performance
of MGDS would be worse than that of GDS from
the viewpoint of computation, in Section 4 we
demonstrate that MGDS has the advantage of
being easier to implement in hardware. It is
interesting that the CD performance of MGDS is
better than that of GDS in the football sequence
when the frame rate is 5-Hz. This is because the
large amount of motion requires enlargement of
the search range to extract the corresponding
MVs. In fact, GDS is suitable for MVs surround-
ing the assumed search center. For blocks of rapid
motion (especially in the diagonal direction),
MGDS performs better because subsequent
searches of it are on the basis of a �1 search area.
Fig. 9 shows a demonstrative example of this
phenomenon, where the dotted searching points
indicate the saved computation of MGDS com-
pared to GDS.
We now compare the CD performance of

MGDS with two other BMAs, traditional FS
and TSS, both of which have efficient hardware
implementations. The size of the search area in FS
and TSS is set to �2 and �7 to achieve the same
computation (25 searching points are examined for
every MB). Therefore, the allocated number of
searching points per frame in MGDS is set to 8250
and 2475 for SIF and QCIF videos, respectively.
Table 2 gives the MSE results for MGDS, TSS,
and FS under the specified computation condi-
tions. For the tennis sequence with a 15-Hz frame
rate, the MSE value of MGDS is the best because
MVs of this sequence approximate a center-biased
distribution and MGDS efficiently allocates com-
putation to blocks based on their motion activities.
Compared to FS and TSS, MGDS can achieve
MSE improvements of 28.07 ð¼ 205:30� 177:23Þ
and 233.99 ð¼ 411:22� 177:23Þ; respectively. For
the football sequence with a 15-Hz frame rate, a
135.62 ð¼ 587:50� 451:88Þ MSE improvement is
obtained by MGDS compared to FS. However,
the result of MGDS is worse than that of TSS

ARTICLE IN PRESS

0

500

1000

1500

2000

2500

3000

128 256 512 1024 1536 2048
∆

128 256 512 1024 1536 2048
∆

128 256 512 1024 1536 2048
∆

128 256 512 1024 1536 2048

∆

M
SE

 p
er

 p
ix

el

3000 searching point/ 5-Hz frame rate
5000 searching point/ 5-Hz frame rate
7000 searching point/ 5-Hz frame rate
9000 searching point/ 5-Hz frame rate
3000 searching point/ 15-Hz frame rate
5000 searching point/ 15-Hz frame rate
7000 searching point/ 15-Hz frame rate
9000 searching point/ 15-Hz frame rate

0

300

600

900

1200

1500

M
SE

 p
er

 p
ix

el

3000 searching point/ 5Hzframe rate
5000 searching point/ 5Hzframe rate
7000 searching point/ 5Hzframe rate
9000 searching point/ 5Hzframe rate
3000 searching point/ 15Hzframe rate
5000 searching point/ 15Hzframe rate
7000 searching point/ 15Hzframe rate
9000 searching point/ 15Hzframe rate

100

200

300

400

500

600

700

800

900

1000

M
SE

 p
er

 p
ix

el

900 searching point/ 5Hz frame rate
1500 searching point/ 5Hz frame rate
2100 searching point/ 5Hz frame rate
2700 searching point/ 5Hz frame rate
900 searching point/ 15Hz frame rate
1500 searching point/ 15Hz frame rate
2100 searching point/ 15Hz frame rate
2700 searching point/ 15 Hz frame rate

0

10

20

30

40

50

60

70

80

M
SE

 p
er

 p
ix

el
900 searching point/ 5Hz frame rate
1500 searching point/ 5Hz frame rate
2100 searching point/ 5Hz frame rate
2700 searching point/ 5Hz frame rate
900 searching point/ 15Hz frame rate
1500 searching point/ 15Hz frame rate
2100 searching point/ 15Hz frame rate
2700 searching point/ 15 Hz frame rate

(a)

(b)

(c)

(d)

Fig. 7. CD results of implicit computation-distribution scheme with fixed TH0 at 512 and different value of D: (a) Football sequence.
(b) Tennis sequence. (c) Foreman sequence. (d) Salesman sequence.

S.-Y. Huang, W.-C. Tsai / Signal Processing: Image Communication 19 (2004) 975–992984
because the football sequence includes large
motion activity, for which TSS is more suitable.
The MSE degradation between MGDS and TSS is
274.18 ð¼ 451:88� 177:70Þ: For the foreman
sequence with a 15-Hz frame rate, the results of
MGDS and TSS are better than that of FS. For
the salesman sequence with a 15-Hz frame rate, the
results of MGDS, TSS, and FS are almost the
same due to the very small motion activity in this
sequence. This indicates that the CD performance
of MGDS is similar to that of TSS. The major
advantage of MGDS over TSS is that MGDS can
be easily implemented using existing �1 FS
designs simply. On the other hand, the CD
performance of MGDS is better than that of FS.
MGDS uniformly achieves a higher quality than
FS by an amount that is dependent on motion
activities of sequences.
4. MGDS algorithm on full-search array

architecture

From the viewpoint of hardware implementa-
tion, FS is the best choice for the estimation of
block motion. However, the computational com-
plexity of traditional FS is huge because it does
not utilize information on motion activity in
video sequences. To take advantage of both the
design regularity of FS and the information on
video motion activity, MGDS is designed such
that it can be performed by a series of �1 FSs, i.e.,

ARTICLE IN PRESS

0

500

1000

1500

2000

2500

M
S

E
 p

er
 p

ix
el

GDS/ 5-Hz frame rate

MGDS/ 5-Hz frame rate

GDS/ 15-Hz frame rate

MGDS/ 15-Hz frame rate

0

300

600

900

1200

1500

3000 5000 7000 9000

Searching point

3000 5000 7000 9000

Searching point

M
S

E
 p

er
 p

ix
el

GDS/ 5-Hz frame rate

MGDS/ 5-Hz frame rate

GDS/ 15-Hz frame rate

MGDS/ 15-Hz frame rate

0

20

40

60

80

900 1500 2100 2700

Searching point

M
SE

 p
er

 p
ix

el

GDS/ 5-Hz frame rate

MGDS/ 5-Hz frame rate

GDS/ 15-Hz frame rate

MGDS/ 15-Hz frame rate

0

20

40

60

80

900 1500 2100 2700

Searching point

M
SE

 p
er

pi
xe

l

GDS/ 5-Hz frame rate

MGDS/ 5-Hz frame rate

GDS/ 15-Hz frame rate

MGDS/ 15-Hzframe rate

(a)

(b)

(c)

(d)

Fig. 8. CD results of GDS and MGDS with TH0 ¼ 512 and D ¼ 256: (a) Football sequence. (b) Tennis sequence. (c) Foreman
sequence. (d) Salesman sequence.

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
7
6

5

4

3
2
1
0

-1
-2
-3

-4
-5
-6
-7

MGDS

GDS

Fig. 9. A diagonal motion example, where dotted searching

points are the saved computation of MGDS over GDS.

Table 2

MSE results of MGDS, TSS, and FS under the same

computation

MGDS TSS FS

(a) 15 Hz

Tennis 177.23 411.22 205.30

Football 451.88 177.70 587.50

Foreman 68.01 59.86 90.48

Salesman 8.69 8.42 8.40

(b) 5 Hz

Tennis 636.01 608.33 843.19

Football 1147.86 1141.01 1680.84

Foreman 317.00 292.33 497.06

Salesman 44.43 41.43 46.47

S.-Y. Huang, W.-C. Tsai / Signal Processing: Image Communication 19 (2004) 975–992 985
a square 3� 3 search window of nine points.
Fig. 10 shows the MGDS structure in a video
coding system comprising three modules: memory

ARTICLE IN PRESS

S.-Y. Huang, W.-C. Tsai / Signal Processing: Image Communication 19 (2004) 975–992986
module, search engine, and control module. The
memory module stores current and referenced
frames. The search engine, which represents the
kernel of this system, comprises an array of �1
FSs that work in parallel to extract the best
matching points. The number of employed �1 FSs
determines the computational power of the pro-
posed design. The major task of the control
module is to control the data flows of MGDS
between the memory module and the search
engine. Details of the control module and the
search engine are addressed below.

4.1. Control module

The threshold-adaptation approach is employed
by MGDS to distribute computational power since
it can achieve better CD performance. Following
Search engine

±1 FS ±1 FS

Memory
Module

Control
Module

Input
Blocks

Motion
Vectors

Fig. 10. Structure of the proposed FS array architecture.

(-1, -1)

(0, -1)

.

.

.

(15, -1)

(-1, 0)

(0, 0)

.

.

.

(15, 0)

(-1, 15)

(0, 15)

.

.

.

(15, 15)

…..

…..

…..

…..

(-1, 16)

(0, 16)

.

.

.

(15, 16)

(16, -1) (16, 0) (16, 15)….. (16, 16)

Search Area, Y

Fig. 11. Pixel structure of the current MB
Eq. (1), the control module sends the addresses of
the current MB X in the current frame and the
current search center Y in the reference frame to
the DMA (direct memory access) controller of the
video coding system. The control module termi-
nates searches of the current MB if one of the
stopping conditions is satisfied. The stopping
threshold is updated by Eq. (5) on a frame-by-
frame basis. The above operations are implemen-
ted in software in the video coding system.
4.2. Search engine

Fig. 11 depicts the pixels structure for a �1 FS,
where X and Y represent the pixels of the current
MB and the search area, respectively. The MV is
computed by searching for the minimum SAD
value between X and nine searching points in the
searching area. The SAD value is defined as

SADk;l
¼
X15
i¼0

X15
j¼0

jX i;j � Y ðkþiÞ;ðlþjÞj; (6)

where �1pkp1; �1plp1; and X i;j and Y i;j are
the intensity values of pixels at location ði; jÞ of X

and Y ; respectively. To avoid redundant memory
accesses, the proposed search engine computes all
SAD values of nine searching points concurrently,
i.e., SAD�1;�1; SAD�1;0; SAD�1;1; SAD0;�1;
SAD0;0; SAD0;1; SAD1;�1; SAD1;0; and SAD1;1:
In addition, the distortion in the SADk;l is a serial
summation of its partial distortions in pipeline
(0, 0)

(1, 0)

.

.

.

(15, 0)

(0, 1)

(1, 1)

.

.

.

(15, 1)

(0, 15)

(1, 15)

.

.

.

(15, 15)

…..

…..

…..

…..

Current MB, X

X and search area Y for a �1 FS.

ARTICLE IN PRESS

S.-Y. Huang, W.-C. Tsai / Signal Processing: Image Communication 19 (2004) 975–992 987
computing, i.e.,

SADk;l
¼
X15
i¼0

PSADk;l
i ; (7)

where PSADk;l
i is the distortion of the ith row in

SADk;l ; calculated as

PSADk;l
i ¼

X15
j¼0

jX i;j � Y ðkþiÞ;ðlþjÞj; 0pip15: (8)

The proposed search engine is implemented as a
coprocessor in the video coding system that
comprises three units as shown in Fig. 12. The
input unit continuously receives pixels of X and Y

stored in the memory module row by row from the
DMA controller, the PSAD computation unit then
evaluates all PSADk;l

i values, and finally all SADk;l

values are serially summed by the SAD summation
unit. Below we describe details of the input, PSAD
computation, and SAD summation units.
4.2.1. Input unit

The input unit shown in Fig. 13 comprises two
parts: the current MB and the search area. For the
latter part, three shift registers (R1, R2, and R3)
with D-type flip-flops ranging from Rl(-1) to
R1(16), R2(-1) to R2(16), and R3(-1) to R3(16)
store pixels in the search area. Two pixels of Y are
serially shifted into Rl, R2, and R3 per clock cycle,
controlled by a 1-3 demultiplexer and a 1-3
counter C1. When C1 is 1, 2, and 3, R1, R2, and
R3 are selected, respectively. Since there are 18
pixels in a row of Y ; nine clock cycles are required
to fetch a row into a shift register. Thus, C1 with
an initial value of 1 is cyclically updated every nine
clock cycles. For the current MB part, a shift
register S1 with 16 D-type flip-flops is used to store
pixels of a row in the search area X : We also fetch
Input
Unit

PSAD
Computation

Unit

SAD
Summation

Unit

Stage 1 Stage 2 Stage 3

MV
X

Y

Fig. 12. Structure of the proposed �1 FS pipeline architecture.
two pixels of X per clock cycle, resulting in eight
clock cycles being required. Thus, one idle cycle is
necessary to synchronize the data flow between the
two parts of the input unit. In addition, an initial
delay of 18 clock cycles is required while the
search-area part fetches the first and second rows.
A timing table of the above operations is provided
in Table 3.

The other objective of the input unit is to
prepare pixels used for the PSAD computation
unit to evaluate PSADk;l

i : After 27 clock cycles,
pixels of the first row in X and the first three rows
in Y are ready in shift registers S1, R1, R2, and
R3, respectively. Therefore, at the 28th clock cycle
the data stored in registers S1 and R1 are
simultaneously loaded into registers S and R,
respectively. The PSAD computation unit uses
these data to compute PSAD�1;�1

0 ; PSAD�1;0
0 ; and

PSAD�1;1
0 at the 28th, 29th, and 30th clock cycles,

respectively. In order to compute the following
partial SAD (i.e., PSAD0;�1

0 ; PSAD0;0
0 ; PSAD0;1

0),
data stored in register R2 are loaded to register R
at the 31st clock cycle. Similarly, data stored in
register R3 are loaded to register R at the 34th
clock cycle to compute PSAD1;�1

0 ; PSAD1;0
0 ; and

PSAD1;1
0 : A total of 16 3-1 multiplexers and a 1-3

counter C2 are used to control the above data
flow. C2 is cyclic updated every three clock cycles,
and R1(-), R2(-), and R3(-) are simultaneously
loaded into register R when C2 is 1, 2, and 3,
respectively.

After the above nine clock cycles (i.e., at the
36th clock cycle), pixels of the second row in X are
ready in register S1, and the second, third, and
fourth row in Y are stored in registers R2, R3, and
R1, respectively. During the next nine clock cycles,
we arrange data in registers S1, R2, R3, and R1

to compute PSAD�1;�1
1 ; PSAD�1;0

1 ; PSAD�1;1
1 ;

PSAD0;�1
1 ; PSAD0;0

1 ; PSAD0;1
1 ; PSAD1;�1

1 ;

PSAD1;0
1 ; and PSAD1;1

1 in the same manner as

described in the above paragraph, except for the
loading order of register R. In this period, data
must be loaded to R in the order R2, R3, and R1
every three cycles, and this loading order is
changed to R3, R1, and R2 at the next nine clock
cycles. The loading-order problem of register R
can be easily solved by setting the initial value of

ARTICLE IN PRESS

Demux C1 C2

(Yi,j ,Yi, j+1)

R1(16)

R1(2)

8

.

.

.

R1(0)

R1(15)

R1(1)

8

.

.

.

R1(-1)

R2(16)

R2(2)

8

.

.

.

R2(0)

R2(15)

R2(1)

8

.

.

.

R2(-1)

R3(16)

R3(2)

8

.

.

.

R3(0)

R3(15)

R3(1)

8

.

.

.

R3(-1)

R1 R2 R3

Y i,16

D-FF
8

Mux

R1(16)

R2(16)

R3(16)

Y i,-1

D-FF
8

Mux

R1(-1)

R2(-1)

R3(-1)

C2

R

(a)

D-FF

D-FF

D-FF

D-FF

8

.

.

.

D-FF

D-FF

D-FF

D-FF

8

Xi, j

Xi,15

Xi,14

Xi,13

Xi,0

.

.

.

.

.

.

Xi, j+1

8

.

.

.

.

.

.

S1 S

(b)

Fig. 13. Block diagram of the input unit. (a) Search area Y ; where Mux and Demux represent the multiplexer and demultiplexer,

respectively. (b) Current MB X :

S.-Y. Huang, W.-C. Tsai / Signal Processing: Image Communication 19 (2004) 975–992988
counter C2 to the value of counter Cl every nine
clock cycles.

4.2.2. PSAD computation unit

The PSAD computation unit computes
PSADk;l

i ; i.e., the partial SADk;l of the ith row.
Fig. 14 shows the block diagram of this unit, which
comprises two subunits: absolute-difference and
adder-tree subunits. The intensity values of pixels
from X i;0 to X i;15 and from Y kþi;lþ0 to Y kþi;lþ15

are simultaneously loaded into the absolute-
difference subunit comprising 16 subtraction and

ARTICLE IN PRESS

Table 3

Timing table for the proposed �1 FS design

T Input unit PSAD computation unit SAD summation unit

1 Y�1;�1;Y�1;0

..

. ^

9 Y�1;15;Y�1;16

10 Y 0;�1;Y 0;0

..

. ..
.

18 Y 0;15;Y 0;16

19 Y 1;�1;Y 1;0

20 Y 1;1;Y 1;2 X 0;0;X 0;1

..

. ..
.

27 Y 1;15;Y 1;16 X 0;14;X 0;15

28 Y 2;�1;Y 2;0 PSAD�1;�1
0

29 Y 2;1;Y 2;2 X 1;0;X 1;1 PSAD�1;0
0

P0
i¼0

PSAD�1;�1
i

..

. ..
. ..

. ..
. ..

.

36 Y 2;15;Y 2;16 X 1;14;X 1;15 PSAD1;1
0

P0
i¼0

PSAD1;0
i

37 Y 3;�1;Y 3;0 PSAD�1;�1
1

P0
i¼0

PSAD1;1
i

38 Y 3;1;Y 3;2 X 2;0;X 2;1 PSAD�1;0
1

P1
i¼0

PSAD�1;�1
i

..

. ..
. ..

. ..
. ..

.

45 Y 3;15;Y 3;16 X 2;14;X 2;15 PSAD1;1
1

P1
i¼0

PSAD1;0
i

..

. ..
. ..

.

171 PSAD1;1
15 SAD1;0

¼
P15
i¼0

PSAD1;0
i

172
SAD1;1

¼
P15
i¼0

PSAD1;1
i

Output MV

S.-Y. Huang, W.-C. Tsai / Signal Processing: Image Communication 19 (2004) 975–992 989
absolute-value circuits that simultaneously
evaluate

ADk;l
i;j ¼ jX i;j � Y ðkþiÞðlþjÞj; 0pjp15: (9)

The adder-tree subunit adds the results from ADk;l
i;0

to ADk;l
i;15 and outputs PSADk;l

i : The adder tree
comprises three levels of 4-2 adders whose output
format is the carry-saved form in order to decrease
the propagation delay during the accumulation
operations. Finally, a carry look-ahead adder is
adopted to translate the carry-saved form into the
binary representation.
4.2.3. SAD summation unit

This unit evaluates SAD values of the nine
searching points of a �1 FS and outputs the
MV. The structure of the SAD summation unit is
depicted in Fig. 15, where a cyclic shift register
with nine D-type flip-flops stores SAD values,
an adder accumulates partial SAD values using
Eq. (7), and a comparator maintains the minimum
SAD. The input of this unit is the output of
the PSAD computation unit, which is in
the following order: PSAD�1;�1

i ; PSAD�1;0
i ;

PSAD�1;1
i ; PSAD0;�1

i ; PSAD0;0
i ; PSAD0;1

i ;
PSAD1;�1

i ; PSAD1;0
i ; and PSAD1;1

i ; where i is from

ARTICLE IN PRESS

4-2
adder

carry
look-
ahead
adder

D-FF

4-2
adder

4-2
adder

8

4-2
adder

4-2
adder

4-2
adder

4-2
adder

1212

8

AD
Xi,0

Yk+i,l+0

AD
Xi,1

Yk+i,l+1

AD
Xi,2

Yk+i,l+2

AD
Xi,3

Yk+i,l+3

AD
Xi,4

Yk+i,l+4

AD
Xi,5

Yk+i,l+5

AD
Xi,6

Yk+i,l+6

AD
Xi,7

Yk+i,l+7

AD
Xi,8

Yk+i,l+8

AD
Xi,9

Yk+i,l+9

AD
Xi,10

Yk+i,l+10

AD
Xi,11

Yk+i,l+11

AD
Xi,12

Yk+i,l+12

AD
Xi,13

Yk+i,l+13

AD
Xi,14

Yk+i,l+14

AD
Xi,15

Yk+i,l+15

Absolute Difference Adder Tree

Fig. 14. Block diagram of the PSAD computation unit.

k,l
iPSAD

D-FFAdder

16

12

16

Comparator

D-FF D-FF

Current
minimum

MV

Fig. 15. Block diagram of the SAD summation unit.

S.-Y. Huang, W.-C. Tsai / Signal Processing: Image Communication 19 (2004) 975–992990
0 to 15. Once a partial SAD is generated, it is
accumulated in the leftmost flip-flop in the shift
register by the adder and the result is then
cyclically shifted for the next SAD. The processing
of all partial SAD values results in the serial
generation of SAD�1;�1; SAD�1;0; SAD�1;1;
SAD0;�1; SAD0;0; SAD0;1; SAD1;�1; SAD1;0; and
SAD1;1; and hence only one comparator is
required to obtain the minimum SAD.

4.2.4. Layout

The engine shown in Fig. 16 is implemented by
the UMC 0.18-um Artisan Cell library. There are
3770 cells and 52 IO pads in this design, the area of

ARTICLE IN PRESS

Fig. 16. Layout of the search engine.

S.-Y. Huang, W.-C. Tsai / Signal Processing: Image Communication 19 (2004) 975–992 991
which is 1200� 1200 mm2: The core area is 600�
600mm2; and operates at 166MHz and 1.8V. In
this architecture, 172 clock cycles are needed to
perform a �1 FS, including the latency of
initialization. Therefore, the total time required
for a �1 FS is 1032 ns. Note that the proposed
design is only one example of the search engine
which can also be formed by other existing
hardware designs of FS.
5. Conclusions

FS is the best choice for block motion estima-
tion from the viewpoint of hardware implementa-
tion, but the computational complexity of
traditional FS is huge. This paper proposes a
simple architecture with a �1 FS array and an
efficient algorithm named MGDS to utilize the
advantage of FS whilst also overcoming its draw-
backs. The basic component of �1 FS array can be
constructed using efficient hardware designs of FS.
In addition, the corresponding computational
power can be easily updated by changing the
number of elements in the FS array and efficiently
distributed to blocks or frames of video sequences
by a stopping threshold adaptation mechanism.
Our resulting architectural and algorithmic code-
sign for block motion estimation is both simple
and efficient.
References

[1] Chein-Wei Jen, Jen-Chieh Tuan, Tian-Sheuan Chang,

On the data reuse and memory bandwidth analysis for

full-search block-matching VLSI architecture, IEEE

Trans. Circuits Systems Video Technol. 12 (1) (January

2002) 61–72.

[2] Chun-Ho Cheung, Lai-Man Po, A novel cross-diamond

search algorithm for fast block motion estimation, IEEE

Trans. Circuits Systems Video Technol. 12 (12) (December

2002) 1168–1177.

[3] H.-M. Hang, Y.-M. Chou, S.-Chih.Cheng, Motion estima-

tion for video coding standards, J. VLSI Signal Process.

Systems for Signal, Image, Video Technol. (November

1997) 113–136.

[4] Information Technology—Coding of Moving Pictures and

Associated Audio for Digital Storage Media at up to

About 1.5 Mbit/s: Video, ISO/IEC 11 172-2 (MPEG-1

Video), 1993.

[5] Information Technology—Generic Coding of Moving

Pictures and Associated Audio Information: Video, ISO/

IEC 13 818-2-ITU-T Rec. H.262 (MPEG-2 Video), 1995.

[6] Information Technology—Generic Coding of Audio-Vi-

sual Objects Part 2: Visual, ISO/IEC 14 496-2 (MPEG-4

Video), 1999.

[7] T. Koga, K. Iinuma, A. Iijima, T. Ishiguro, Motion-

compensated interframe coding for video conderencing,

Proc. NTC81. New Orleans, LA, 1981, pp. C9.6.1–9.6.5.

[8] T. Komarek, P. Pirsch, Array architecture for block

matching algorithms, IEEE Trans. Circuits Systems

(October 1989) 269–277.

[9] R. Li, B. Zeng, M.L. Liou, A new three-step search

algorithm for block motion estimation, IEEE

Trans. Circuits Systems Video Technol. 4 (August 1994)

438–442.

[10] P. Pirsch, N. Demassieux, W. Gehrke, VLSI architecture

for video compression—a survey, Proc. IEEE (February

1995) 220–246.

[11] L.M. Po, W.C. Ma, A novel four-step search algorithm for

fast block motion estimation, IEEE Trans. Circuits

Systems Video Technol. 6 (3) (1996) 313–317.

[12] Shih-Chang Hsia, VLSI implementation for low-complex-

ity full-search motion estimation, IEEE Trans. Circuits

Systems Video Technol. 12 (7) (July 2002) 613–619.

[13] Standardization Sector of ITU, Video Coding

for Low Bitrate Communication, ITU-T Rec. H.263,

March 1996.

[14] A.M. Tourapis, O.C. Au, M.L. Liou, Predictive motion

vector field adaptive search technique (PMVFAST)—

enhancing block based motion estimation, Proceedings of

ARTICLE IN PRESS

S.-Y. Huang, W.-C. Tsai / Signal Processing: Image Communication 19 (2004) 975–992992
Visual Communications and Image Processing 2001

(VCIP-2001), San Jose, CA, January 2001.

[15] C.de Vleeschouwer, T. Nilsson, K. Denolf, J. Bormans,

Algorithmic and architectural co-design of a motion-

estimation engine for low-power video devices, IEEE
Trans. Circuits Systems Video Technol. 12 (12) (December

2002) 1093–1105.

[16] S. Zhu, K.-K. Ma, A new diamond search algorithm for

fast block-matching motion estimation, IEEE Trans.

Image Processing 9 (February 2000) 287–290.

	A simple and efficient block motion estimation algorithm based on full-search array architecture
	Introduction
	Modified gradient-descent search algorithm
	Macroblock scheduling for parallel 1 full searching
	Computation distribution
	Explicit computation distribution
	Implicit computation distribution

	Experimental results
	MGDS algorithm on full-search array architecture
	Control module
	Search engine
	Input unit
	PSAD computation unit
	SAD summation unit
	Layout

	Conclusions
	References

