
http://trj.sagepub.com

Textile Research Journal 

DOI: 10.1177/0040517507081312 
 2007; 77; 871 Textile Research Journal

Junmin Zhang, Xungai Wang and Stuart Palmer 
 Objective Grading of Fabric Pilling with Wavelet Texture Analysis

http://trj.sagepub.com/cgi/content/abstract/77/11/871
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 can be found at:Textile Research Journal Additional services and information for 

 http://trj.sagepub.com/cgi/alerts Email Alerts:

 http://trj.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints: 

 http://www.sagepub.co.uk/journalsPermissions.navPermissions: 

 http://trj.sagepub.com/cgi/content/refs/77/11/871 Citations

 at Uni Lucian Blaga on March 14, 2010 http://trj.sagepub.comDownloaded from 

http://trj.sagepub.com/cgi/alerts
http://trj.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.co.uk/journalsPermissions.nav
http://trj.sagepub.com/cgi/content/refs/77/11/871
http://trj.sagepub.com


 Textile Research Journal Article

Textile Research Journal Vol 77(11): 871–879 DOI: 10.1177/0040517507081312 www.trj.sagepub.com © 2007 SAGE Publications

Objective Grading of Fabric Pilling with Wavelet Texture 
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As one of the results of fabric abrasion, the unsightly
appearance of pilling can seriously compromise the fabric’s
acceptability for apparel. Pills are formed in four stages:
fuzz formation, entanglement, growth and wear-off [1].
The fabric type is one of the most important parameters
that affect pilling. Due to their loose structure, knitted fab-
rics fuzz and pill more than woven fabrics, while fuzz is
more common for non-woven fabrics because of the pres-
ence of bonds. Usually a non-woven fabric tears long
before pills form (see Figure 1(1)). Normally, resistance to
pilling is tested in the laboratory by processes that simulate
accelerated wear, followed by a manual assessment of the
degree of pilling by an expert based on a visual comparison
of the sample to a set of standard test images [2]. As this
subjective evaluation can be inconsistent and inaccurate,
more reliable and accurate objective evaluation methods
are desirable.1

Digital image-processing techniques provide one of the
best solutions for the objective evaluation of fabric pilling.

Many researchers have tried to separate the pills from
the background by image techniques, such as pixel-based
brightness (or height)-thresholding [2–10] and region-based
template matching [11, 12]. 

The brightness value of single pixel actually depends
upon the illumination conditions, color and pattern of fab-
rics. It is a common wisdom in computer vision and image
techniques that the brightness variation is more informative
than the brightness value. Although three-dimensional sur-
face profiles obtained by using a laser-beam [10], stereo-
vision system [6] and projected-light [4, 9] conquer those
influences, the laser-beam and stereovision system employ
expensive and complicated equipment. As for the pro-
jected-light system, the initial roughness of fabrics, damage
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feature vector based on the wavelet detail coeffi-
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caused after pilling and the presence of fuzz make the
detection of the boundary line (i.e. the height threshold)
between pills and fabric base complicated.

Figure 1 shows test images with pilling intensity one (max-
imum pilling level) for three different fabric types – non-
woven (blanket), woven (plain) and knitted (lambswool) fab-
rics. The pills exhibit fractal characteristics, with features at
multiple scales. It is difficult to define a priori an optimal
template to match the diverse shape and size of pills. 

It has been proposed in two recent studies [13, 14] that
the pilling intensity can be classified by the standard devia-
tion of the horizontal detail coefficients of two-dimen-
sional discrete wavelet transform at one given scale. When
the analysis scale closely matches the fabric texture fre-
quency, the discrimination is the largest. This original
method was based on a simple linear heuristic method,
derived from observation, for the selection of the single
best decomposition level on which to base future sample
classification. 

Here we propose a new method based on wavelet tex-
ture analysis to objectively classify fabric pilling intensity.
The new method created a complex texture feature vector
based on the wavelet detail coefficients from all decompo-
sition levels and horizontal, vertical and diagonal orienta-
tions, permitting a much richer and more complete
representation of pilling texture in the image to be used as
a basis for classification. The use of principal components
analysis (PCA) and discriminant analysis (DA) placed this
method on a solid mathematical foundation. 

In this paper, the theoretical basis of wavelet texture
analysis is firstly explained. The choice of wavelet and anal-
ysis scale is discussed based on the analyzed images. PCA
was used to find the significant components of the feature
vector and then the pilling propensity of three fabric types
was graded to degree 1–5 successfully by DA.

Two-dimensional Discrete Wavelet 
Transform 
The two-dimensional discrete wavelet transform (2-D
DWT) could be seen as the one-dimensional discrete
wavelet transform applied sequentially along the horizon-
tal (row) and vertical (column) axes.

The algorithm is illustrated in Figure 2. We first con-
volved the rows of original image, Aj, with a one-dimen-
sional low-pass filter Lo-D or band-pass filter Hi-D,
retained every other column, then convolved the columns
of the resulting images with Lo-D or Hi-D and retained
every other row. From the discrete filters Lo-D and Hi-D,
we could construct the corresponding mother wavelet
function, ψ, and vice versa.

At each scale, the finer approximation sub-image, Aj,
was decomposed into a coarser approximation sub-image,
Aj+1, and detail sub-images ,  and . For any
decomposition scale number J > 0, an image, A0, was
completely represented by the 3J + 1 sub-images Aj,

, , . AJ was the coarse
approximation at scale J and corresponded to the lowest
frequencies. ,  and  were

Figure 1 WoolMark® standard pill-
ing test images from (1) SM 50
blanket set; (2) SM 50 plain set;
(3) SM 54 lambswool set.

Figure 2 Decomposition of an image, Aj, into a coarser
approximation sub-image, Aj+1, and detail sub-images
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called horizontal, vertical and diagonal detail sub-images,
respectively. ,  and  were the different
information between the approximation sub-images Aj and
Aj+1.  gave the vertical high frequencies (horizontal
edges),  gave the horizontal high frequencies (vertical
edges) and  gave the high frequencies in both direc-
tions (diagonal edges). The wavelet decomposition meas-
ured the image brightness variations at different scales and
orientations. By using a wavelet orthogonal base, this set of
sub-images could be interpreted as a set of independent
spatially oriented frequency channels. There was no redun-
dant information between each scale detail sub-image [15].

Wavelet Texture Analysis 
Multiscale wavelet transform methods of textural feature
extraction are called wavelet texture analysis (WTA) and
have been used to characterize texture and to treat the prob-
lem of texture segmentation and classification [16–19]. 

The basic idea of WTA is to generate textural features
from wavelet detail coefficients or sub-images at each
scale. The approximation sub-image usually represents the
lighting or illumination variation, so it is generally not
included as a textural feature. The normalized energy of
the wavelet detail coefficients is defined as:

(1)

where  is the size of the sub-image. When these
energies are employed as elements of the textural feature
vector, it is called the wavelet energy signature [19]. As the
mean values of detail coefficients are equal to zero [18],
the normalized wavelet energy signatures are equal to the
variances of the wavelet detail coefficients.

The wavelet packet energy signature is also used in tex-
ture classification [17, 20]. However, the wavelet packet
transform is more natural and effective for textures which
have a dominant middle frequency channel. For pilling
images with energy concentrated in the low frequency chan-
nels, the conventional wavelet transform is more suitable. 

Application to the Pilling Image 
Grading

In the visual evaluation, observers rated the pilling of a
fabric by comparing pill properties, such as pill numbers,
area and density, to those of the visual standard. The inten-
sity of fuzz and pills, which was related to the five degrees
of observer-assessed pilling intensity, changed the fabric
surface texture correspondingly. The fabric texture (in

non-woven fabrics, the fuzz and pills appeared to be the
main texture), fuzz, pills and background intensity varia-
tion usually had different space-frequency distributions. 

Therefore, with the appropriate wavelet and decompo-
sition scale, we separated the fabric texture, fuzz, pills and
background intensity variation into independent sub-
images by 2-D orthogonal DWT. Then the wavelet energy
signature, , which characterized
the distribution of the fabric texture, fuzz, pills and back-
ground intensity variation along the scale axis over three
orientations, could be used by multivariate analysis to clas-
sify the observations. Principal components analysis trans-
formed a set of correlated variables into a smaller set of
uncorrelated variables called principal components. It is
recommended as a first step prior to performing any other
kinds of multivariate analysis. It can help to assess the
actual dimensionality of the data [21]. Then the principal
components were used as new observation variables of
each pilling image. The principal component scores were
used as observation vectors of DA to classify the pilling
images. 

Choice of Wavelet and 
Decomposition Scale
The feature vectors extracted from the pilling images were
determined by two parameters: the analyzing wavelet and
the decomposition scale. The 2-D DWT was an inner prod-
uct between the image data and the wavelet; therefore,
wavelet coefficients combined information about the
image and the wavelet. Hence, the choice of those two
parameters mainly depended on the pilling image data
profiles we wanted to analyze.

In selecting a wavelet function, there were several crite-
ria which were considered:

1) Orthogonal or Non-orthogonal 
If the data at separate scales were correlated, it was diffi-
cult to know whether a similarity between the detail sub-
images at different scales was due to the property of the
image itself or to the intrinsic redundancy of the wavelet
representation. In orthogonal wavelet analysis, the infor-
mation in each detail image was independent, which was
consistent with the assumption that each texture had its
unique distribution of features at all scales. Orthogonal
wavelet families included Daubechies (dbN), Symlets
(symN) and Coiflets (coifN).

2) Shape
A common pitfall in transform analysis is to forget the
presence of the transform function [22]. In order to reduce
the risk that the structure of the analyzing wavelet function
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was misinterpreted as a characteristic of the image, we
chose the wavelet in accordance with the intrinsic structure
presented in the data. Figure 3 presents examples of the
pixel data profiles (horizontal, vertical and diagonal) from
three standard pilling test images and a range of wavelet
function profiles. From Figure 3 we can see that horizon-
tal, vertical and diagonal intensity profiles of non-woven,
knitted and woven pilling images had a sharp peak with
two nearly symmetric troughs at either side. The coifN
wavelet family had shapes similar to this. 

3) Decomposition Scale and Wavelet Width  
The Matlab function WMAXLEV (S, Wname) calculates
the maximum decomposition scales for an image of size S
using wavelet Wname. The rule gives the last scale for
which at least one coefficient is valid. It is given by: 

(LW-1)*(2^level) < LS (2)

where LW = the length of wavelet filter coefficients and
LS = the length of image row/column [23]. When the size

Figure 3 Typical shapes of data and
analysis wavelets.
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of an image is fixed, the shorter the filter coefficients’
length, the larger the decomposition scale. 

According to this rule, for a pilling image of 
pixels, if the analyzing wavelet function is coif1 whose filter
length is 6, the maximum decomposition scale is 6, while for
coif5 whose filter length is 30, the maximum scale is only 4.

To evaluate this rule, we decomposed the pilling image
taken from Figure 1(2) (see the Experimental Material
section) and reconstructed the detail-only images (Fig-
ure 4(2), (4), (6) and (8)) and the corresponding last scale
approximation images (Figure 4(1), (3), (5) and (7)) with
wavelet coif1 and coif5. The coif5 scale 4 approximation
sub-image (Figure 4(5)) still contained most pill informa-
tion and background intensity change while the fabric tex-
ture has been separated (see Figure 4(6)). The coif1 scale 6
approximation image (Figure 4(1)) contained only a little
pill information, which could be detected by the difference
of the maximum pilling gray value between Figure 4(2) and
Figure 4(4). In the case of the  pixels pilled
woven fabric image, we needed to decompose it to scale 7,
so that the detail coefficients could completely represent
the pilling texture and the scale 7 approximation image
represented the background intensity variation (see Fig-
ure 4(3) and 4(7)). The decomposition level at which the
background features (intensity variation) became apparent
was relative to the size/magnification of the original image.
To reduce the invalid coefficients, coif1 should be selected
as analysis wavelet.

Generally, when the row/column pixels of sub-images
were near or equal to the number of the wavelet filter coef-
ficients, the decomposition stopped. The size of scale 7
sub-image was 8, which was still larger than the coif1 filter
length 6.

Therefore, in order to separate the pills from the back-
ground intensity variation caused by lateral illumination or
fabric surface unevenness, which had a lower frequency
than the pills and fabric texture, we selected coif1 and 7 as
analyzing wavelet and scale.

Experimental Material 

To evaluate the new method, woven, knitted and non-
woven pilling test images were used. Figures 5–7 show the

 pixel samples taken from them.

512 512×

512 512×

Figure 5 Woven fabrics: WoolMark
SM 50 plain.

512 512× Figure 4 Approximation, reconstructed detail-only images.
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For each pilling degree (1 to 5), we desired four sample
images. The WoolMark SM 50 blanket and plain pilling
test image sets provided four samples for each pilling
degree. The WoolMark SM 54 lambswool pilling test
image set had only one image for each pilling degree. We
cut the standard image of this set into four samples without
over-lapping (it was assumed that the distribution of pills
was random).     

Experimental Procedure
1. Each image was decomposed to 7 scales and 21 detail
sub-images using the coif1 wavelet. The normalized energy
of each detail sub-image became an element of the texture

feature vector. There were four images of each of the five
pilling intensities, so there were 20 texture feature vectors,
each containing 21 elements for each set pilling test
images. As noted above, each sub-image was the measure-
ment of image gray value variants at that scale i.e. the
edges of pills were distributed amongst all of the detail
sub-images, so each element of the feature vector was
equally important. The variance of each element was not
comparable, so the raw data were standardized by dividing
each element by its standard deviation.

2. By PCA, the principal components of the texture fea-
ture vector were determined. As the PCA was based on the
standardized data and correlation matrix, components
whose eigenvalue was greater than 1 were selected as prin-
cipal components, as shown in Figure 8. 

Figure 6 Knitted fabrics: WoolMark
SM 54 lambswool.

Figure 7 Non-woven fabrics: Wool-
Mark SM 50 blanket.

Figure 8 Determine the principal
components of the wavelet energy
signature.
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3. The principal component scores of all the 20 images
were used as observation vectors of DA. Classification was
performed first with all four samples used as the training
set and then three of the four samples used as the training
set (the remaining one was used as the observation sam-
ple). As the observation number of each class was less than
the number of observation variables, we analyzed the data
by pooling the variance-covariance matrices.

The image preparation, 2-D DWT, and PCA and DA
were performed using the Matlab Image Processing Tool-
box, Wavelet Toolbox, Statistics Toolbox, respectively [23–
26].

Results and Discussion

Figure 9 shows that the scale 7 approximation sub-image
reflected the background intensity variation, and the
reconstructed image without the scale 7 approximation
contained all the pilling/texture information of the original
image, except for the uniform background lighting. The
fabric texture information was mainly concentrated in the
scale 1–4 detail images and the pilling information in the
scale 5–7 detail images. The results in Table 1 show that
sub-images that had strong relationships with the nth prin-
cipal component were scale 1–4 horizontal and scale 3–5
vertical with the first principal component, scale 1–2 verti-
cal and scale 5–6 horizontal with second, scale 1 vertical
and scale 7 horizontal with third, scale 4 diagonal and scale
7 vertical with fourth, and scale 6 vertical and scale 7 hori-
zontal with fifth. In the scale 1–4 sub-images, as the pilling
intensity increased, the variance (energy) of sub-image
increased as the pills introduced variations that broke the
background uniform fabric structure [13]. In the scale 5–7
sub-images, the background fabric structure was filtered
out and there remained the pills’ information which was
reflected by the energy, as shown in Figure 9. Therefore,
the wavelet energy signature measured the pilling informa-
tion in different scales and orientations.

In the case of Figure 8 i.e. WoolMark SM 50 plain pill-
ing test images analyzed by coif1 wavelet to 7 decomposi-
tion scales, the first five principal components accounted
for about 90 % of the variation of the original variables.
PCA could effectively assess the actual dimensionality of
the wavelet texture feature vector and helped the DA to
produce a discriminant rule for classifying the fabric pilling
in this application.

The results in Table 2 show that the 20 pilling images
were successfully classified into 5 pilling degrees. The
training misclassification error ratio was the percentage of
observations in the training set that were misclassified. By
using one sample of each pilling intensity group as an
observation and the remaining three as the training set, we
also got high classification accuracy, as shown in Table 3.

Discriminant analysis is a conventional probabilistic
classifier that like the maximum-likelihood classifier allo-
cates each observation to the class with which it has the
highest posterior probability of membership. Studies have
shown that the accuracy of DA classification increases with
training set size [27].

Table 1 PCA eigenvectors of wavelet energy signature 
(PCn: principal component n; Sn: scale n; H: horizontal, 
etc.).

PC1 PC2 PC3 PC4 PC5

S1-H –0.28 –0.09 0.15 –0.23 –0.23

S1-V –0.01 –0.35 0.37 0.06 0.27

S1-D –0.23 –0.25 0.22 0.01 –0.04

S2-H –0.30 0.02 0.08 –0.20 –0.18

S2-V 0.18 –0.31 0.25 –0.01 0.26

S2-D –0.22 –0.25 0.31 –0.12 –0.04

S3-H –0.29 0.16 –0.00 –0.11 –0.09

S3-V 0.28 –0.20 0.07 –0.05 0.12

S3-D –0.22 –0.22 0.16 –0.27 –0.02

S4-H –0.27 0.20 0.10 0.01 0.02

S4-V 0.30 –0.13 0.01 –0.07 –0.07

S4-D 0.04 0.26 0.19 –0.41 0.38

S5-H –0.08 0.40 0.22 –0.02 0.10

S5-V 0.30 –0.04 0.06 –0.21 0.00

S5-D 0.15 0.28 0.22 –0.45 0.05

S6-H 0.14 0.30 0.27 0.18 –0.01

S6-V 0.22 0.01 –0.00 –0.19 –0.59

S6-D 0.24 0.14 0.26 –0.07 –0.18

S7-H 0.03 –0.03 0.40 0.32 –0.40

S7-V –0.10 0.23 0.29 0.46 0.15

S7-D 0.24 0.04 0.25 0.03 –0.16

Table 2 All four samples used as training set.

Sample type
Training

set

Training
misclassification 

error ratio

WoolMark SM50
blanket

4/each degree 0

WoolMark SM54
lambswool

4/each degree 0

WoolMark SM50
plain

4/each degree 0
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We propose that the WTA analysis method described
here simulated the human visual evaluation process, in
which experts observed and separated the background tex-
ture, background intensity change, fuzz and pills of a fab-
ric, then the fuzz and pill properties were evaluated, and
then after comparing with the standard images, the fabric
pilling intensity was rated.

Conclusions
We have developed a new method based on wavelet tex-
ture analysis and multivariate analysis to objectively grade

the pilling intensity of standard pilling test images. The
grading process simulated the human visual pilling evalua-
tion. We discussed how to select the wavelet and decompo-
sition scale that was optimal for this application. With coif1
wavelet and decomposition scale 7, the fabric texture, fuzz,
pills and background intensity variation information could
be separated into horizontal, vertical and diagonal detail
sub-images and approximation sub-images at different
scales. The wavelet energy signature extracted from the
detail sub-images gave a much richer and more complete
representation of pilling texture in the image than the orig-
inal published method [13]. Principal components analysis
and discriminant analysis could derive the representative

Figure 9 The reconstructed scale
1–7 detail sub-images, the scale 7
approximation image, the recon-
structed detail-only image using
wavelet coif1 and the original Wool-
Mark SM 50 plain degree 1 standard
pilling test image.

Table 3 Three of four samples used as training group (samples 1–4: degree 1, 5–8: degree 2, etc.).

Sample type
Training

set
Samples

Training
misclassification

error ratio

Samples
classification

result

WoolMark
SM50
blanket

Remaining 3 [1 5 9 13 17]
[2 6 10 14 18]
[3 7 11 15 19]
[4 8 12 16 20]

0
0
0
0.0667

[1 2 3 4 4]
[1 2 3 5 5]
[1 2 3 4 4]
[1 2 3 4 5]

WoolMark
SM54
lambswool

Remaining 3 [1 5 9 13 17]
[2 6 10 14 18]
[3 7 11 15 19]
[4 8 12 16 20]

0
0
0
0

[1 2 3 4 5]
[1 2 3 4 5]
[1 2 3 4 5]
[2 2 3 2 5]

WoolMark
SM50
plain

Remaining 3 [1 5 9 13 17]
[2 6 10 14 18]
[3 7 11 15 19]
[4 8 12 16 20]

0
0
0
0.0667

[1 3 4 4 5]
[1 2 2 4 4]
[3 2 2 3 5]
[1 3 3 4 4]
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description of each pilling grade and use it as a discrimi-
nant rule, and the standard 20 samples could be success-
fully classified into 5 degrees of pilling intensity. The
combination of principal components analysis and discri-
minant analysis permitted a sophisticated basis for classifi-
cation and placed this method on a solid mathematical
foundation.
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