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Hybrid Image Segmentation Using
Watersheds and Fast Region Merging
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Abstract—A hybrid multidimensional image segmentation al- segment. Alternatively, segmentation can be considered as a
gorithm is proposed, which combines edge and region-based pixel labeling process in the sense that all pixels that belong
techniques through the morphological algorithm of watersheds. to the same homogeneous region are assigned the same label.
An edge-preserving statistical noise reduction approach is used as Th | defi h . f .

a preprocessing stage in order to compute an accurate estimate of ere are severg ways t.o .e Ine _homogeneity (_) a region
the image gradient. Then, an initial partitioning of the image into  based on the particular objective of the segmentation process.
primitive regions is produced by applying the watershed trans- However, independently of the homogeneity criteria, the noise
form on the image gradient magnitude. This initial segmentation corrupting almost all acquired images is likely to prohibit the
is the input to a computationally efficient hierarchical (bottom- generation of error-free image partitions [8]

up) region merging process that produces the final segmentation. . . .
The latter process uses the region adjacency graph (RAG) repre- ~ Many techniques have been proposed to deal with the image

sentation of the image regions. At each step, the most similar pair Segmentation problem [9], [10]. They can be broadly grouped
of regions is determined (minimum cost RAG edge), the regions into the following categories.

are merged and the RAG is updated. Traditionally, the above Histogram-Based Technique§he image is assumed to be

is implemented by storing all RAG edges in a priority queue. : ; . :
We propose a significantly faster algorithm, which additionally composed of & number of constant intensity objects in a

maintains the so-called nearest neighbor graph, due to which the We”'separated ba_ckground. The image h_iStOQFa”_‘ is USU?”V
priority queue size and processing time are drastically reduced. considered as being the sample probability density function
The final segmentation provides, due to the RAG, one-pixel wide, (pdf) of a Gaussian mixture and, thus, the segmentation prob-
closed, and accurately localized contours/surfaces. Experimental |amy js reformulated as one of parameter estimation followed
results obtained with two-dimensional/three-dimensional (2-D/3- by pixel classification [10]. However, these methods work well
D) magnetic resonance images are presented. yp ; - ! . .
_ _ ~only under very strict conditions, such as small noise variance
Index Terms—Image segmentation, nearest neighbor region o few and nearly equal size regions. Another problem is
merging, noise reduction, watershed transform. L L
the determination of the number of classes, which is usually
assumed to be known. Better results have been obtained by
I. INTRODUCTION the application of spatial smoothness constraints [11].

MAGE segmentation is an essential process for most sub-Ed9€-Based Techniquesthe image edges are detected and

sequent image analysis tasks. In particular, many of ttfeen groupe.d (Iinkpd) into F:ontours/surfaces that represent
existing techniques for image description and recognition [#f}€ boundaries of image objects [12], [13]. Most techniques
[2], image visualization [3], [4], and object based image coniS€ a_dlfferentlat.lon filter in order to approxmate the first-
pression [5]-[7] highly depend on the segmentation resul@der image gradient or the image Laplacian [14], [15]. Then,

The general segmentation problem involves the partitionifgndidate edges are extracted by thresholding the gradient or
of a given image into a number of homogeneous segmehk@Placian magnitude. During the edge grouping stage, the
(spatially connected groups of pixels), such that the uni(gietect_ed ed.ge pixels are grouped in order to form continuous,
of any two neighboring segments vyields a heterogened@&e'p'Xd wide contours as expected [16]. A very successful
method was proposed by Canny [15] according to which
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process, similar neighboring regions are merged accordingwell, while reducing the noise quite effectively. At the second
a certain decision rule [12], [19]-[21]. In splitting techniquesstage, this noise suppression allows a more accurate calculation
the entire image is initially considered as one rectangulaf the image gradient and reduction of the number of the
region. In each step, each heterogeneous image regiondefected false edges. Then, the gradient magnitude is input to
the image is divided into four rectangular segments and tttee watershed detection algorithm, which produces an initial
process is terminated when all regions are homogeneousinage tessellation into a large number of primitive regions
split-and-merge techniques, after the splitting stage a mergii8d.]. This initial oversegmentation is due to the high sensitivity
process is applied for unifying the resulting similar neighef the watershed algorithm to the gradient image intensity
boring regions [22], [23]. However, the splitting techniqueariations, and, consequently, depends on the performance
tends to produce boundaries consisting of long horizontal aafithe noise reduction algorithm. Oversegmentation is further
vertical segments (i.e., distorted boundaries). The heart refluced by thresholding the gradient magnitude prior to the
the above technigues is the region homogeneity test, usuafpplication of the watershed transform. The output of the
formulated as a hypothesis testing problem [23], [24]. watershed transform is the starting point of a bottom-up
Markov Random Field-Based TechniqueBhe true image hierarchical merging approach, where at each step the most
is assumed to be a realization of a Markov or Gibbs randogimilar pair of adjacent regions is detected and merged. Here,
field with a distribution that captures the spatial contexhe region adjacency graph (RAG) is used to represent the
of the scene [25]. Given the prior distribution of the truémage partitions and is combined with a newly introduced
image and the observed noisy one, the segmentation problegarest neighbor graph (NNG), in order to accelerate the
is formulated as an optimization problem. The commoniegion merging process. Our experimental results indicate a
used estimation principles areaximum a posterior{MAP) remarkable acceleration of the merging process in comparison
estimation, maximization of the marginal probabilities (ICMJo the RAG based merging. Finally, a merging stopping rule
[26] and maximization of the posterior marginals [27]. Howmay be adopted for unsupervised segmentation.
ever, these methods require fairly accurate knowledge of thdn Section |l, the segmentation problem is formulated and
prior true image distribution and most of them are quithe algorithm outline is presented. In Section I, a novel
computationally expensive. edge-preserving noise reduction technique is presented as a
Hybrid Techniques:The aim here is offering an improvedpreprocessing step, followed by the proposed gradient ap-
solution to the segmentation problem by combining techniquptoximation method. In Section IV, the watershed algorithm
of the previous categories. Most of them are based on the int¢ed and an oversegmentation reduction technique are briefly
gration of edge- and region-based methods. In [20], the imagescribed. In Section V, the proposed accelerated bottom-
is initially partitioned into regions using surface curvaturedp hierarchical merging process is presented and analyzed.
sign and, then, a variable-order surface fitting iterative regidtesults are presented in Section VI on two-dimensional/three-
merging process is initiated. In [28], the image is initiallyimensional (2-D/3-D) synthetic and real magnetic resonance
segmented using the region-based split-and-merge techni¢M&) images. Finally, conclusions and possible extensions of
and, then, the detected contours are refined using edge the algorithm are discussed in Section VII.
formation. In [29], an initial image partition is obtained by
detecting ridges and troughs in the gradient magnitude image); prosiEM FORMULATION AND ALGORITHM OUTLINE
through maximum gradient paths connecting singular points. ) "
Then, region merging is applied through the elimination of Let L = {0,1,--, L.} be the set of intensities gnd
ridges and troughs via similarity/dissimilarity measures.  © — {(z,y) : 1 <2 < N,1 <y < N} be the spatial
The algorithm proposed in this paper belongs to the Categ&%ordmatgs of a pixel in &,-row by N-column Image. The
of hybrid techniques, since it results from the integration 8¢ * ™ neighborhood of pixep = (z.y) over 5 is defined
edge- and region-based techniques through the morphologﬁ%lfOHOWS:
watershed transform. Many morphological segmentation apy n(p)
proaches using the watershed transform have been propose
in the literature [30], [31]. Watersheds have also been used in ~ le=(zw) € 5|z — 2| < |m/2], |y —w| < |n/2]}
multiresolution methods for producing resolution hierarchi

of image ridges and valleys [3], [32]. Although these metho eater than its argument. In the 3-D case, the neighborhood
were successful in segmenting certain classes of imag fs’pointp — (v.y.2) is defined in a simillar oy, In our

they require significant interactive user guidance or accurg ?mulation, it is assumed that the true imaeis corrupted

pritor Igpowledlge on It(he irt?flge sérlucturse. %3:; im3|11{0\g]ng angy additive independent identically distributed Gaussian noise.
extending earlier work on this problem [8], [33], [34], the proy ence, the observed imageé is defined as follows

posed algorithm delivers accurately localized, one pixel wide
and closed object contours/surfaces while it requires a small Y(p)=X(p)+nlp), pes (1)
number of input parameters (semiautomatic segmentation).

Initially, the noise corrupting the image is reduced by a novelheren(p) ~ N(0,5?) is the zero-mean Gaussian distribution
noise reduction technique that is based on local homogeneitigh standard deviatiors. It is also assumed that the true
testing followed by local classification [35]. This technique ismage is piecewise constant. More specifically, there is a
applied to the original image and preserves edges remarkapaytition of S, namely Ay (S) = {Ri,Rs, -, Rk~ }, for

here'm,n are odd and|-| denotes the largest integer not
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some natural numbeK™, such that TABLE |
VALUES OF PARAMETER C' FOR VARIOUS NEIGHBORHOOD

K SiIZES AND VALUES OF THE SIGNIFICANCE LEVEL «
S=J R,
e} NEIGHBORHOOD PARAMETER '
- Size
nxn a=0.05 [ a=0.025] a=0.001
RiNR;=0, Yi,je{l,2,...,K"}, fori#j, Ix3 07230 | 09483 | 12322
R;,Vie {1,2,...,K*}, is connected, (2) 5 X5 04566 |  0.5746 | 0.7192
) . Tx7T 0.3265 0.4286 0.5102
X(p)=Cn, fpeR,, Yme{l2 - K} 9x9 0.2577 | 0.3164 |  0.3868
) 11 x 11 0.2181 0.2654 0.3553
where C,,, is a constant, and 3 <13 01837 0.9998 09974
. . 15x15 0.1787 0.1920 0.2557
C,, # C,, if R, andR,, are adjacent 3 17 % 17 0.1397 0.1688 0.2243
. . . . . =441
It is reminded that two regions are adjacent if they share a 312 ; )1(93 8'1232 8;;3; 8'2882
common boundary, that is, if there is at least one pixel in EXE x5 09154 0.2609 0.3409
one region, such that, its & 3 neighborhood contains at TR T X T 0.1989 01546 02051

least one pixel belonging to the other region. According to
the above formulation, the output of the image segmentation o _ _ o
algorithm should be the image partitia¥y - (S). In addition, of two Gaussian dlstr|but|on_s with prior probabiliti€}, mean
it is assumed that small pixel neighborhoods contain either oy@luesy: and common variance? = o, for i = 0,1. The
(homogeneous) or two (heterogeneous) regions [8], [35]. probability density function of the mixture is given by

Fig. 1 shows the stages of the proposed segmentation al- 1 L (x — pi)?
gorithm. The aim of the first stage is the reduction of the P(z) = ZBeXp{—T}- (4)
noise corrupting the image while preserving its structure, based oV i=0 ‘
on the above homogeneity/heterogeneity assumption for thecording to the above formulation, the maximum likelihood
image regions. The proposed noise reduction technique(i8L) ratio test gives
applied locally by processing the neighborhood of each pixel . 82 2
separately. The underlying idea is estimating the true pixel Nxn(p) is homogeneous, 87 < (1 + C)o ®)

intensity by detecting the presence (or absence) of imagbereS? is the sample variance of;,..,(p), that is,

structure (homogeneity versus heterogeneity) and by applying 2
the appropriate estimation technique, as explained in Section s, 1 1 ]
lll. At the second stage, the gradient of the smoothed image N Z Yig) - N Z Y

is calculated using the Gaussian filter derivatives with a small €N (1) €N xn (1)
scale since the noise has already been substantially reduégametecC is determined by the significance level of the test
at the first stage. Then, the gradient magnitude is calculaté€., the probability of wrongly accepting homogeneity), based
and thresholded appropriately. At the next stage, the resultidg the fact that the random variablé5?/o? is distributed
gradient magnitude is passed on to the watershed detec@ggording toy?,_,, under the homogeneity hypothesis. Table
algorithm, which produces an initial image partition, namell gives the values of parameté€r for various neighborhood
Ag,(S). It is assumed thak, > K* and that there exists asizes and significance levels. N, .. (p) is decided to be
sequence of region merges that transforng, (S) to the true  homogeneous, then the true value of pixels estimated by
partition A (S). In other words, each regioRX™ of Ay. the sample mean aN,xn(p), which is the best estimator
is assumed to be the union of a numberf;, regions. At (unbiased and minimum variance) in the case of Gaussian
the final stage, a novel fast region-merging process is applie@ise, namely,
to the most similar pair of adjacent regions at each step. The . 1
merging process may be terminated either interactively or with Xp) = N Z Y(qg).
the use of a given stopping rule based on hypothesis testing. 1N (P)
If M.xn(p) is decided to be heterogeneous, then the unknown

lI. N OISE REDUCTION AND GRADIENT COMPUTATION mixture parameters?;, pi; in (4) are estimated and used in
alculating the threshold.. Then, the central pixel neighbor-
POd is classified into one of the two mixture components and,
ﬁ1erefore, the intensity estimation is given by

(6)

At the first stage of the segmentation algorithm, the foﬁ-
lowing smoothing technique is proposed. For a given pix
p of the observed imagé”, its square (or cubic in 3-D
imaging) neighborhoodV,, . (p), for oddn, is considered the X(p) = {/fh, if Y(p) > T. )
support based on which a binary decision about the presence flo, otherwise
or absence of homogeneity must be reached. A homogenemreﬂi is an estimate ofi;. The value of7, is calculated
Nuxn(p) is considered to be a sample of side=n x n of according to the following formula:

a Gaussian random variable with meamand variances?. A ) ) ) .
heterogeneous/,, «,,(p) is considered to be a sample of size T, = 1O T, 0T ﬁ 8)
N of a random variable following the distribution of a mixture 2 i —flo P
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where P; is an estimate of?. In [8], [35] it was shown that for each pixel there is a probability of either 1) accepting a
when the signal-to-noise ratio (SNR)= '”00;”1' is greater nonedge pixel as an edge one, or 2) rejecting an edge pixel
than two, the algorithm reduces noise quite efficiently whilas nonedge one. The first type of error corresponds to the
preserving the image structure. The mixture parameters aegection of false edges due to noise, whereas, the second one
estimated by the method of moments using the three fitstthe partial grouping of edges which results in contours being
sample moments [8], [35]. The closed-form estimators are broken into small edge groups (edgels) separated by gaps.
The above errors do not allow the generation of the contour

fli = %[[3 —(=1)'vVp?* = 4], (9) representations required by higher level analysis, namely, one-
R N ‘ pixel wide closed curves.
b= (-1)—"———, fori=0,1 (10) A different approach to image segmentation, which over-
i comes the problem of disconnected contours and false edges,
wherei = mod(i + 1, 2), is the application of the morphological watershed transform to
9 the gradient magnitude image [30], [31]. This approach allows
8= w) v = &_52, the generation of an initial image partition into regions and,
-4 ©2—q consequently, region-based techniques can be used in order

to produce closed, one pixel-wide contours/surfaces. In the
¢t =my, c=my—o0°, c3=ms—3mo’, following, we briefly describe the fast watershed detection
. ) algorithm proposed by Vincent and Soille [31].
gnd m; is the jth _order sample mome”t W (p), for gLet X bep a%reysca{e digital image. WateErsr]leds are defined
J = 1’2’.3' Experlmentql comparisons of the moment ©s the lines separating the so-called catchment basins, which
timator with the ML estimator haye ShOWn that, Whe_n thBelong to different minima. More specifically, a minimubh
classes are well-separated, the estimators yield nearly 'demmntensity level (altitude} in X is a connected set of pixels

estimates .[8]' Rrowded that the original Image foI_Iows tI"\‘fvith intensity 2, such that it is impossible to reach a pixel of
adopted piecewise constant model and the noise is abov

tain level. th ¢ fh d noi d tJ‘?]t%nsityh’ without having to pass from a pixel of intenstiy/,
certain level, the performance ol e proposed Noise reAUcti@ia e 7 « 1, < 17, The catchment basi®’(M) associated
method is superior to that of other methods, such as lin

. . . . T Sfith the minimum2/ is a set of ixels, such that, if a dro
filtering, median filtering and anisotropic diffusion [36]. The f water falls at any pixel irC(MF;, then it will flow down P

perforr‘i\anci. oft_the ??E’e rgduchop :;%ge tgepel;]ds 08 {8%he minimumaz. The watersheds computation algorithm
accurate estimation ot the noise varancein the obSeIved ooy nere is based on immersion simulations [31], that is,

image. Several noise variance estimation methods have b§en, . 1o sive detection and fast labeling of the different

proposed in the literature [37]. Also, the noise reduction Stad&tchment basins using queues. The algorithm consists of two

ggﬁﬁggs(ﬂ]e ﬂ;? t\rﬁlrli]eb)of)rpi;msfre\\llvglfztegagagg duzir { teps: sorting and flooding. At the first step, the image pixels
. . ) fe sorted in increasing order according to their intensities.
estimated noise variance.

. . ing the im intensity hi ram, a hash table is all
At the second stage of the segmentation algorithm, tIrLljeS g the image intensity histogram, a hash table is allocated

. . ; B in"memory, where the-th entry points to a list containing the
gradient field of the smoothed image.X(p) is computed. ..o |ocations of intensity Then, this hash table is filled by
Among the known gradient operators, namely, classical (Sobel , : . . .

. : . . AU scanning the image. Therefore, sorting requires scanning the
Prewitt), Gaussian or morphological, the Gaussian der'vat'vﬁage twice using only constant memory. At the flooding step
have been extensively studied in the literature [12]. Provid?d . . L . '

o . . . . he pixels are quickly accessed in increasing intensity order
that the original noise level is not high or the noise ha@

been effectively reduced in the first stage, then all the abo g1mer5|on) using the sorted image and labels are assigned to

operators mav perform well. However. if the original nOiste:atchment basins. The label propagation is based on queues
P y P ) ' 9 constructed using neighborhoods [31].

level is high or the noise has not been effectively reduced in . . .
) : -~ " The output of the watersheds algorithm is a tessellation
the first stage, the use of small scale Gaussian derivative fllte¥s

. . . itu the input image into its different catchment basins, each
may further reduce noise. Finally, the gradient magnitude . . :
one characterized by a unique label. Among the image water-

'mage ”V.‘X (p)|| s calculated and used as described in thsqwed points, only these located exactly half-way between two
next section. . . :
catchment basins are given a special label [31]. In order to
obtain the final image tessellation, the watersheds are removed
IV. INITIAL SEGMENTATION USING WATERSHEDS by assigning their corresponding points to the neighboring
In this stage, an initial image partition into primitive regiongatchment basins.
is obtained using the image gradient magnitude. As mentionedThe input to the watersheds algorithm is the gradient
in Section |, edge-based segmentation algorithms operatagnitude imagé:(p) = ||VX(p)|| computed at the previous
by detecting edges using the intensity gradient and, thestage, as described in Section lll. The high sensitivity of the
by grouping them in order to form contours/surfaces. Edgeatersheds algorithm to noise yields a very large number
detection is typically based on image gradient processing, eaf.,catchment basins, leading to oversegmentation. Fig. 9(b)
nonmaximum suppression and magnitude thresholding. Thélustrates an oversegmentation case resulting from applying
image pixels are labeled as either edge or nonedge ones [15¢, watershed detection algorithm to the MR image shown in
[18]. However, since the latter labeling decisions are locdtig. 7 (right). Earlier attempts in oversegmentation reduction
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(" Edge Preserving Noise Reduction place of G in the thresholding process, that is,

—

(Gradicnt Computation & Thresholding /; T\P) = 0, otherwise

(" nitial chmcmmn by Watershods | where QS is_produced py smoothing on_ly the_ noncandidgte
l ’ edge pixels in. A candidate edge pixel is defined as having

(Fast Nearcst Neighbor Region Merging | intensity value inG that is a local maximum along the

direction of the gradient vector at that pixel. Note that, in
Fig. 1. Flow diagram of the proposed segmentation algorithm. (3 the noncandidate edge-pixels being in the neighborhood
of candidate ones are relatively enhanced. Finally, the value
[30], [31], do not use all the regional minima of the inpubf 7 in (11) may be determined directly based on the esti-
image in the flooding step but only a small number ghated noise variancé?. For example, typical values &f
them. These selected regional minima are referred to @hich produce satisfactory initial oversegmentation reduction
markers Prior to the application of the watershed transformyy gimost all experimental cases considered are lessafian
the intensity image can be modified so that its regiongly. 9(d) shows the initial segmentation result for the image of

minima are identical to a predetermined set of markers by thgy 7 (right) after oversegmentation reduction using gradient
homotopy modification method [30]. This method achievagresholding.

the suppression of the minima not related to the markers
by applying geodesic reconstruction techniques and can be
implemented efficiently using queues of pixels [38]. Although
markers have been successfully used in segmenting many ) i ) ) i .
types of images, their selection requires either careful ugdr Stepwise Optimal Hierarchical Region Merging
intervention or explicit prior knowledge on the image structure. In addition to the above oversegmentation reduction method,
In our approach, image oversegmentation is regarded there still remain neighboring regions that could by merging
an initial image partition to which a fast region-merginyield a meaningful segmentation, on the principal that each
procedure is applied (see Section V). As explained in Sectioggion is homogeneous and sufficiently different from its
V, the larger the initial oversegmentation, the higher theeighbors. More specifically, lefx, be the initial image
probability of false region merges during merging. In additiorpartition produced by the watershed detection algorithm. It
the computational overhead of region merging clearly dependsassumed thatAg, satisfies (2) while there are many
on the size of this initial partition, and consequently theegion pairs not satisfying (3). The goal of the hierarchical
smallest possible oversegmentation size is sought. One wagion merging process presented here is to transfanm
to limit the size of the initial image partition is to prevento the sought image partitioch~ (see Section 1) using a
oversegmentation in homogeneous (flat) regions, where #eguence of region pair merges. Therefore, the problem is
gradient magnitude is low since it is generated by the residdiding the optimal sequence of merges in the sense that its
noise of the first stage (see Fig. 1). The watershed transfoapplication to Ay, producesAg-. It is also assumed that
is applied to the thresholded gradient magnitude im&ge A - minimizes an objective functiof' defined over the space
where the pixels ofG having value smaller than a givenof K-partitions and, therefore, the sequence of merges that
thresholdZ" are set to zero. Due to thresholding, many gfroduces an image partition which minimizEss sought. The
the regional minima of7 located in homogeneous regions areroblem belongs to the class of combinatorial optimization
replaced by fewer zero-valued regional minimaGi. These problems and, hence, finding its global solutions is a very
regional minima may contain isolated groups of high gradieditfficult task [39]. The global solutions may be found using
values that are not segmented by the watershed transfoexhaustive search in which case all possible sequences of
since each pixel in any of the isolated groups is associated witlerges are applied t x, and then evaluated using the cost
the same regional minimum. However, high threshold valtiesfunction. However, even for small sequences, the search space
may cause merging of regional minimadhthat correspond to is extremely large. The solution adopted here is based on
different neighboring objects, if the gradient magnitude alorthe stepwise optimization of'. In other words, the sought
their common boundary is not sufficiently high. In this casesequence of merges is constructed step-by-step, where at each
only one catchment basin is created, since the two objestep the region pair merge that produces the partition with
share a common regional minimum and, consequently, tiee minimum value ofF" is selected. Such a sequence of
watersheds will be constructed between them. Merging oferges does not guarantee the construction of the optimal
two neighboring regional minima may also be encounterdd*-partition [40], [41]. The latter suggests that the sequence
even when the thresholding operation creates a one-pixel wiferegion merges may contain false ones, that is, merges of
path of zero values connecting the two regional minima. Thissimilar regions. The probability of a false merge depends
behavior of the watershed transform is expected since theth on the sizes of the regions to be merged and on the noise
decision to create watersheds it is not based on local processiagance. Therefore, the larger the initial partition, the higher
but on the global topographic image shape. the expected number of false merges during merging. In this
In order to lower the probability of merging minima cor-respect, the worst possible initial partition would be the one
responding to different objects, we propose the usé&gfin  where each image pixel is a separate region. In our approach,

V. FAST NEAREST NEIGHBOR REGION MERGING
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severe oversegmentation is avoided through edge preserving
noise reduction and gradient magnitude thresholding (Section 1
).

B. Region Dissimilarity Functions

The objective cost function used in this work is the square
error of the piecewise constant approximation of the ob-
served imagé&’, which yields a measure of the approximation
accuracy and is defined over the space of partitions. Le
Ry = {R};, R3;, -+, R}T} be aM-partition of imageY” and o ' ' _
R?\Z _ {pk,lapk,% o 7pk7||R§/[I|} be the set of pixels belonging Fig. 2. Six-partition of an imagd€ft), andthe corresponding RAGidht).
to region R%,. In the piecewise constant approximation of
Y, the image intensity in each regidi,, k = 1,2,---, M,

of partition R, is approximated by one parameter, which e
minimizes the square error with respect to the détand is /Ce)
\ Merging a & b

equal to the mean value &f in R%,, namely
oL
C

Y (pr.i)

where||R|| denotes the cardinality of s& The corresponding
square error is
12

E(R},) = Z [Y (pri) — N(Rﬁl)]Q'

i=1

Therefore, the total square error is

M

E(Rm) =Y _ E(R).

It is clear that, ifR}, is the optimalA/-partition with respect Fig. 4. RAG (eft) and one of its possible NNG'sight).

to the squared error, then the optim@/ — 1)-partition is
generated by merging the pair of regions A&f,, which

minimizes the following dissimilarity function [41], [42]: edges. Each region is represented by a graph node and between
SR R two regions (nodes) j € V exists the edgé, j) if the regions
( M> M) are adjacent. An example of a six-partition of an image and the

R IR v AT S corresponding RAG are shown in Fig. 2. A cost is assigned
- HR7\24H + HR?% ‘ [“(RM) B “(Rﬂjf)] 16.5)  (12) to each graph edge expressing the dissimilarity between the
two adjacent regions. The most similar pair of adjacent regions

where corresponds to the edge with the minimum cost. Since, at each
. 1, if regionsR}}g,R}g are adjacent merging step the edge with the minimum cost is required, the
2(i,9) = +00, otherwise. appropriate data structure is a priority queue which can be

) _ o ~implemented efficiently by a heap [44], [45]. All RAG edges
According to the above formulation, the most similar pair of;e stored in a heap according to their costs.

regions is the one minimizing (12). . After the application of the watershed transform, the pro-
The determination of the optimal number of segmeiitsis  §,ced K -partition image is used for the construction of the
performed by checking the value 6, ). If 6 is greater than jnitia) RAG (K-RAG) that will be input to the region merging
a certain threshold, then the merging process is terminatgthcequre. This requires one raster scan of the partition image
This threshold can be determined by using the knowledge gfying which the neighboring relations (RAG edges) between
the noise distribution (hypothesis testing) [8]. image regions (RAG nodes) are identified. Then, the size and
) ) ] ] the intensity sum of each RAG region are computed and stored
C. Merging Using the Region Adjacency Graph in the corresponding RAG node since they are used by the
The data structure for representing partitions is the regisnbsequent region merging process. Constructing the heap of
adjacency graph (RAG) [43], [44]. The RAG offé-partition edges requires the calculation of edge costs (12) and takes
is defined as an undirected graghi,= (V, E), whereV = O(]|E||) time using the bottom-up heap construction method
{1,2.--, K} is the set of nodes an®l C V' x V is the set of [45], [46].
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@) (b) (©

Fig. 5. Examples of the three possible NNG-cycle modification types due to merging. (a) NNG-cycle cancellation. (b), (c) NNG-cycle creationnwiith (b) a
without (c) the participation of the node resulting from merging. Notation: RAG ddge, NNG edge(—) and NNG cycle(«<).

a<b a>b

(@
AN\ L a L
p ) | L)

\ a’<b \
o <?)y<@ < ij )\(Ab QE)

S . ~—

Fig. 6. Two examples of NNG-edge modification due to merging.

Given the RAG of the initiali{-partition (){-RAG) and the their neighbor lists. Also, the dissimilarity values (costs) of the
heap of its edges, the RAG of the suboptirfl—)-partition neighboring nodes with the node resulting from the merging
((K — n)-RAG) is constructed by the following algorithm,stage change and must be recalculated using (12).
which implements the stepwise optimization procedure de-The positions of the changed-cost edges in the heap must

scribed above. be updated, requiring(log,(||E||)) time for each update.
Input: RAG of the K-partition ({-RAG). In addition, a few edges must be removed since they are
Iteration: Fori =0ton —1 canceled due to merging. This is illustrated in Fig. 3, where
Find the minimum cost edge in thgk — ¢)- a merging example of two RAG nodes is given. Before the
RAG using the edge heap. merging of nodesa and b, nodee is a common neighbor
Merge the corresponding pair of regions to gdb a and b. After their merging, one of the edges,(e),
the (K — i — 1)-RAG. (b, €) must be removed from the RAG and the heap. Then,
Update the edge heap. the positions of the changed-cost edges in the heap must be

Output: RAG of the (K — n)-partition (X — n)-RAG). updated (edgesab, c), (ab, d), (ab, e) in Fig. 3). However,

At each merging step, the edge with the minimum cost &nce these positions are unknown, a linear search operation
removed from the heap i(log,(||E||)) time and the cor- requiring O(||E||) time results inO(d, || E|| - log, (|| E||)) time
responding nodes are merged. The merging operation causeseach merge, wherd,, denotes the degree of the node
changes in both the RAG and the heap. All RAG nodes thatoduced by merging the most similar region pair. Therefore,
neighbored a node of the merged node pair must restructdree to the usual large heap size, the total computation time is
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Fig. 7. Synthetic image (left) and real medical MR image (right).

Fig. 8. Result of the noise reduction stage on the images of Fig. 7.

considerably increased. This is particularly true in 3-D images,, = (V,,,, E.,,), is a directed graph with,,, = V and the
where the initial partition usually contains a very large numbelirected edge(i, j),7,7 € V belongs toF,,, if S(i,j7) =
of regions. min{S(i, k) : (i,k) € E}. An example of a RAG and one of
) ] its possible NNG’s is shown in Fig. 4. When there are more

D. Fast Nearest Neighbor Merging than one nodes minimizin§, the edge is directed toward the

The proposed solution to accelerate region merging is baseztle with the minimum label. The above definition implies
on the observation that it is not necessary to keep all RABat the out-degree of each node is equal to one. The edge
edges in the heap but only a small portion of them [8ktarting at a node is directed toward its most similar neighbor.
Specifically, we introduce the NNG, which is defined as A cycle in the NNG is defined as a sequence of connected
follows. For a given RAG,G = (V,E) and a symmetric graph nodes (path) in which the starting and ending nodes
dissimilarity functionS : V x V. — R, the NNG, namely, coincide (see Fig. 4). By definition, the NNG contailfi]||
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Fig. 9. Initial segmentation results of the images in Fig. 8 after applying the Gaussiar(dilter 0.7) and thresholding. (] = 0 (2672 regions). (b)
T = 0 (3782 regions). (c)I' = 5 (1376 regions). (d}I' = 5 (1997 regions).

edges and has the following properties [8]. graph cycles in the heap. The additional computational effort

Property 1: The NNG contains at least one cycle. required is one swap operation in the auxiliary array following

Property 2: The maximum length of a cycle is two each swap operation in the heap.
rroperty £ j . g cy¢ L After the RAG construction, the NNG is formed by search-
Property 3: The regions of the most similar pair are con-

nected by a cvele ing for the most similar among the neighbors of each RAG
y yce. node. Then, the NNG cycles are identified by a scan of the
Property 4: A node can participate at most one cycle.

= . NNG. The heap of cycles is filled using the bottom-up method
Property 5: The maximum number of cycles ig{V[|/2]. .4 the merging proceeds as follows.

A direct consequence of Property 3 is that the heap must keep |nput: RAG and NNG of theK -partition.
only the NNG cycles and not all the RAG edges. In this case, Iteration: Fori = 0ton — 1

the worst-case size of the heap is equal |{¥||/2]. Property Find the minimum cost edge in thek — ¢)-

4 implies that each cycle is uniquely determined by one of the RAG using the cycle heap.

regions it connects. This fact allows the significant reduction Merge the corresponding pair of regions to get
of the linear search to constant time search during the merging the (K — ¢ — 1)-RAG.

stage. In implementing the search, an auxiliary array with size Update the NNG and the cycle heap.

equal to the heap size is used to store the positions of the Output: RAG and NNG of the( K — n)-partition.
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Fig. 10. Intermediate segmentation results. Top: 1000 regions. Middle: 500 regions. Bottom: 100 regions.
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Fig. 11. Final segmentation results overlaid on the original images. Left: 7 regions. Right: 25 regions.

During the merging operation, the NNG is updated affect the cycle heap. Two examples illustrating the NNG
follows. When the nodes of a cycle are merged, the costsafge modifications are shown in Fig. 6. In order to detect
the neighboring RAG edges and, consequently, the structtihe modification type of NNG edges (Figs. 5 and 6) the
of the NNG are modified. Two NNG cycles are defined agecond order neighborhood of the new node must be examined
neighbors if there is at least one RAG edge connecting two m&sulting inO(d22)+/3-1og2(||B||)) time for each merge, where
their nodes. For example, in Fig. 5(a), the cydlgg), (k,m) 4> denotes the second-order neighborhood size of the new
are neighbors because nodesndk are connected through anode,3 is the number of NNG cycles modified by the merge,
RAG edge (dotted line). A neighboring cycle to the mergeaind B is the set of the NNG cycles stored in the heap. Hence,
one is canceled when the dissimilarity value (cost) between tie proposed method is expected to be particularly fast for
new node and the node of the cycle neighboring the new naglaphs with small mean node degrees. The latter is true for
is less than the dissimilarity value between the cycle nodes. Fbe RAG's as the experiments demonstrate below.
example, in Fig. 5(a) before merging nodesnd 7, the costa
of RAG edge(y, k) is greater than the cosétof cycle (k,m), VI. EXPERIMENTAL RESULTS AND DISCUSSION

wherea = 6(j, k) andb = 6(k,m). After merging, the cosi’ The two 2-D (256x 256, 8 b/pixel) images shown in Fig. 7
of RAG edge(ij, k) happens to be smaller than cost’ < b),  were used in order to illustrate the stages of the segmentation
resulting in the cancellation of cyclgs,m). When a cycle is ggorithm and visually assess the quality of the segmentation
canceled, then it must be removed from the heap. The cancelg\its. The synthetic image [Fig. 7(a)] is piecewise constant,
cycle position in the heap is determined directly without anhe packground intensity level is 80, the object intensity level
search, using the auxiliary array. Merging may also cause #3€110 and contains simulated additive white Gaussian noise
creation of new cycles [see Fig. 5(b) and (c)] that must Rgith standard deviatiow = 10. Fig. 7(b) shows a noisy T1-
inserted in the heap. In Fig. 5(b), the merging of noflesd \yejghted MR brain image, where the noise was statistically
J creates the NNG edg@j, k) which together with the NNG tested and found to be approximately additive Gaussian with
edge(k, zj) creates the new NNG cycléj, k). According to estimated standard deviatian = 13. Concerning the noise
this scenario, the node resulting from the above merging (i.eorrupting MR images, it is safe to assume that its distribution
nodeij) participates in the new NNG cycle. Another possiblgs Gaussian at least within tissues where the signal has large
scenario is the creation of new cycles without the participatizalues [47], [48].
of the node resulting from merging. For example, in Fig. 5(c) Fig. 8 shows the result of the proposed edge-preserving
merging modifies the dissimilarity values in such a way thajbise reduction stage. In our work, the required estimate of
causes the cancellation of NNG edddsi), (m,j) and the the noise standard deviation was evaluated by the maximum
creation of NNG edgesk,m), (m, k), thus resulting in the value of the cumulative histogram of all local variances, each
NNG cycle (k,m). computed at the corresponding ¥313 neighborhood. In the
The NNG edges not forming cycles may also be modifiedbove MR image the estimated noise standard deviation was
These modifications must be taken into account for maig- = 13.5. The window size was set to 1% 11 for the
taining NNG consistency during merging and they do naiynthetic image and & 9 for the MR image, and it affects
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Fig. 12. Number of RAG edges (solid line) and NNG cycles (dotted line) as a function of the merge number for the image in Fig. 8 (right).
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Fig. 13. Histogram of the RAG node degree for the image in Fig. 8 (right).

the performance of the noise reduction algorithm as followghe nonrobust behavior of the algorithm on very noisy images.
For large window sizes, the power of the homogeneity telst addition, the adopted image model does not handle more
(i.e., the probability of correctly accepting heterogeneity) isomplex structures such as smooth intensity transitions (ramp
large in the case of step edges, while it is relatively smaddges) and junctions.

in the case of bar edges. Therefore, the thin features of theAt the second stage, the gradient magnitude of the smoothed
image (lines, corners) are oversmoothed. For small windamage is calculated using the Gaussian filter derivatives with
sizes, the power of the homogeneity test is small and teealec = 0.7. Then, the gradient magnitude was thresh-
variance of the mixture parameter estimates is large. Therefarkled using (11), where the smoothed gradient magnitude
the resulting noise reduction is small. However, the abovés was produced by 3x 3 neighborhood averaging of
phenomena occur for very noisy images. In Fig. 8, it isoncandidate edge pixels. At the third stage, the watershed
clear that the noise is sufficiently reduced while the imagietection algorithm was applied to the thresholded image
context is preserved and enhanced. Note that the propogeaidient magnitude. Fig. 9 shows the initial tessellations of
noise reduction algorithm does not impose any smoothndbe images produced by the application of the watershed
constraints and, therefore, when the noise level is not higletection algorithm on the image gradient magnitude for
the image structure is preserved remarkably well. However, warious thresholds. It is clear that the larger the threshold the
believe that the lack of smoothness constraints is the sourcesofaller the number of the regions produced by the watershed
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Fig. 14. Segmentation of a natural image. (a) Original image (“MIT"). (b) Result of the noise reduction stage. (c) Initial segmentation aftér gradien
thresholdingl’ = 2, 2347 regions). (d) Final segmentation (80 regions).

detection algorithm. However, the use of high thresholds méipal segmentation results are given in Fig. 11 with seven and
destroy part of the image contours, which cannot be recovei2si regions, respectively. The number of regions of the initial
at the merging stage of the segmentation algorithm. Moimage tessellation determines the computational and memory
specifically, it was observed that when the noise is not higlequirements for the construction and processing (merging) of
the choice for the threshold value close to the noise standéné RAG and NNG. The number of the RAG-edges and the
deviation is safe. However, when noise is high, small threshatdmber of NNG-cycles are shown in Fig. 12 as a function of
values should be used. This is justified from the fact that whéme number of merges. The size of the cycle heap is nearly
noise is high, the noise reduction algorithm may oversmootime order of magnitude smaller than the size of the heap
part of the image intensity discontinuities resulting in lovof RAG edges. As explained in Section V, the additional
gradient magnitudes. Therefore, the use of high threshadmputational effort for manipulating the NNG at each merge
values in (11) may destroy part of the object boundaries. of region pair depends on the distribution of the second order

The initial tessellations are used at the last stage of theighborhood size in the RAG. In Fig. 13, a typical histogram
algorithm for the construction of the RAG’s and NNG’s, andf the RAG degree at an intermediate stage of merging is
then the merging process begins. Fig. 10 shows several intiown. As expected, the RAG is a graph with low mean degree
mediate results of the merging process using the correspondamgl this explains the low additional computational effort for
initial segmentation results shown in Fig. 9(c) and (d). Ththe NNG maintenance.
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TABLE I
TyPICAL EXECUTION TIMES OF THE PROPOSED SEGMENTATION ALGORITHM AND ITS STAGES WITH AND WITHOUT THE USE OF THENNG

EXECUTION TIMES (percentage of total time)

ALGORITHM STAGE 2D Image (256 x 256) 3D Image (256 x 145 x 16)

RAG [ RAG & NNG RAG | RAG & NNG
Noise Reduction 4.9 sec (21.7%) | 4.9 sec (48.1%) || 48 sec (13.4%) | 48 sec (37.2%)
Gradient Computation || 2.3 sec (10.2%) | 2.3 sec (22.5%) || 15 sec (4.2%) | 15 sec (11.6%)
Initial Segmentation 0.8 sec (3.5%) | 0.8 sec (7.8%) 14 sec (3.9%) | 14 sec (10.8%)
Region Merging 14.6 sec (64.6%) | 2.2 sec (21.6%) || 280 sec (78.4%) | 52 sec (40.3%)
Total time [ 22.6 sec 10.2sec | 357sec | 129 sec

The proposed segmentation algorithm was also applied to
natural images, such as, the standard “MIT” image (256
256, 8 b/pixel) shown in Fig. 14(a). This image contains sharp
intensity transitions and can be considered as approximately
piecewise constant in most of its areas. The image was]
assumed to contain Gaussian noise with estimated stan
deviationos = 1.5. The result of the noise reduction stage
using a 5x 5 window is shown in Fig. 14(b). Due to the
fine detail in the image the window size can not be large
(n > 7) because the two Gaussian mixture assumption in
heterogeneous pixel neighborhoods may not hold. The initial
segmentation result using gradient thresholdifhigH 2, 2347
regions) and the final segmentation result (80 regions) are
given in Fig. 14(c) and (d), respectively. Note that, despite
the simplicity of both the underlying image model and the
dissimilarity function used, the majority of important image
regions were successfully extracted. (b)

The 3-D version of the algorithm was applied to a %6
145 x 256 MR cardiac image, a slice of which is shown in
Fig. 15(a). Fig. 15(b) shows the result of the noise reduction
stage, where a ¥ 5 x 5 window was used. Fig. 15(c) shows
the initial segmentation which resulted from the watershed
detection stage on the thresholded gradient magnitude image
where the scale of the Gaussian filter was 0.7 and the thresholg
T = 2. Lastly, Fig. 15(d) shows the final segmentation result
containing 40 3-D regions.

Based on our experiments we concluded, that the smaller
the number of the initial (correct) partition segments, the betté} B
the final segmentation results. On the other hand, the use of
thresholds producing initial partitions with small number of
segments may cause the disappearance of a few significan
contours. The 2-D and 3-D version of the proposed image
segmentation algorithm were implemented in the C program-
ming language on a Silicon Graphics (R4000) computer. Table
Il shows typical execution times and percentages with respect
to the total time for each stage of the proposed algorithm with
and without the use of NNG. Note that the noise reduction
stage requires a great percentage of the total execution ti d?
This is due to the current implementation in which the required g
parameters are computed at each window position separately,
The noise reduction algorithm may be accelerated by consid-
ering a faster implementation, namely, using the separability
property in order to compute the sample moments [12].

Finally, regarding the memory requirements of the proposed ) ) ) )
IE}g. 15. Three-dimensional image segmentation results. (a) Raw 3-D MR
al

alggrithm, they are high (FIUG primarily to the Waterghed g ge (slice 5). (b) Smoothed image. (c) Initial oversegmentation (3058
gorithm [31]. At the merging step, the memory required fokgions). (d) Final segmentation (40 regions).

.....
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the representation of the RAG, NNG and heap of cycles i]

O(IVII+ | E|) which is quite small compared to that required o]
by the watershed algorithm alone.

10

VII. CONCLUSION 1ol

1

A fast hybrid segmentation algorithm was presented whic[h ]
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K. Haris, “A hybrid algorithm for the segmentation of 2D and 3D
images,” Master's thesis, Univ. Crete, 1994.

N. Pal and S. Pal, “A review on image segmentation techniqurefern
Recognit. vol. 26, pp. 1277-1294, 1993.

R. Haralick and L. Shapiro, “Image segmentation technique¥,GIP,
vol. 29, pp. 100-132, 1985.

K. Mardia and T. Hainsworth, “A spatial thresholding method for image
segmentation,IEEE Trans. Pattern Anal. Machine Intelivol. 10, pp.

integrates edge and region-based techniques via the watershed919-927, Nov. 1988.

detection algorithm. The output of the algorithm is the RAG dt?l

the final segmentation based on which closed, one-pixel wige;]
object contours/surfaces may readily be extracted. In addition
the RAG provides information about the spatial relationshiﬁg]
between objects and can drive knowledge-based higher lepe]
processes as a means of description and recognition. T?&
overall approach provides a general framework in which grach-
ent and region-based techniques are combined. Furthermd¥é,
the proposed algorithm allows the interactive control of thggs
stopping point by storing intermediate partitions. In other
words, the user may select the iteration at which the resultinl%
segmentation is acceptable. (9]

The proposed segmentation algorithm was implemented fao]
the 2-D and 3-D cases and produced very satisfactory results
both with respect to segmentation performance and executig
times. However, the memory requirements are relatively high
due to the watershed detection algorithm [31]. Also, when t 2,
SNR is low, it is expected that the proposed noise reduction
stage may not perform well as far as edge preservation (8]
concerned. Finally, although the proposed region dissimilarity
function was proven quite suitable for near piecewise constam;
images, the use of more complex functions may give better
results on the expense of computational complexity during]
the merging process. For instance, the zero-order polynomial
approximation can be used as a first step in a sequence of[#§!
creasing order piecewise polynomial approximations (variabig,
order fitting [20]) in order to segment images of high structural
complexity, e.g., range images. However, the computationa[%]
efficient extension of the proposed technique to this direction
is an open research topic.

Future research is directed toward the improvement Bl
the 3-D version of the algorithm and its extension to the
segmentation of moving 3-D images [49]. [30]
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