
CONTOUR LINES EXTRACTION AND RECONSTRUCTION
 FROM TOPOGRAPHIC MAPS

Tudor GHIRCOIAS and Remus BRAD
Lucian Blaga University of Sibiu, Romania

remus.brad@ulbsibiu.ro

ABSTRACT
The past years needs for Digital Elevation Models and consequently for 3D
simulations requested in various applications had led to the development of fast
and accurate terrain topography measurement techniques. In this paper, we are
presenting a novel framework dedicated to the automatic or semiautomatic
processing of scanned maps, extracting the contour lines vectors and building a
digital elevation model on their basis, fulfilled by a number of stages discussed in
detail throughout the work. Despite the good results obtained on a large amount of
scanned maps, a completely automatic map processing technique is unrealistic and
the semiautomatic one remains an open problem.
Keywords: contour line, curve reconstruction, topographic map, scanned map.

1 INTRODUCTION

The growing need for Digital Elevation Models
(DEMs) and 3D simulations in various fields led to
the development of fast and accurate terrain
topography measurement techniques. Although
photogrammetric interpretations of aerial
photography and satellite imagery are the most
common methods for extracting altimetry
information, there is a less expensive alternative for
obtaining the same or similar data: the use of
scanned topographic maps. Beside the cost-
effectiveness there are some other advantages of this
procedure:
• The inherent problems of satellite and aerial

images: obstructions, cloud cover, unclear
atmosphere.

• The time needed for obtaining the geographical
data is significantly reduced.

• The large number of existing paper maps, which
remains the most frequent form of ground
surface representation.

• In the case of landscapes, which underwent
changes in the past, old historical maps are often
the only source of information.
The most interesting information shown by these

maps are the contour lines (isolines), which are
imaginary lines that join different points located at
the same elevation. The isolines result from
intersecting the ground surface with horizontal,
parallel and equidistant planes. Topographic maps
usually show not only the contours but also other
thematical layers which overlap: streams and other

bodies of water, forest cover or vegetation, roads,
towns and other points of interest, toponyms etc.

Unfortunately, contour lines are usually the
lowest layer in a map after the background layers.
For this reason and not only, the extraction of these
isolines becomes very difficult. There are mainly two
difficulties in finding a solution to this open
problem:
• isolating the contour lines from other thematical

layers of the map
• processing the resulting binary image and

contour reconstruction, the extracted isolines
often being fragmented and affected by
unwanted elements (noise).
The research in the field of contour line

extraction and vectorization went on for many years,
recently being published more and more articles on
this subject. Usually, the articles and research focus
mainly on one of the two important aspects of the
extraction process: contour line segmentation and
automatic reconstruction, but a bit more concern is
being shown about the second aspect.

The main necessary steps described in most
publications for an automatic or semiautomatic
extraction procedure are the following:
1. preprocessing of the raster scanned map
2. segmentation
3. processing of the binary image (filtering,

thinning, pruning, etc)
4. curve reconstruction
5. raster to vector conversion

Given the high complexity of most topographic
maps and the importance of color information, recent

mailto:remus.brad@ulbsibiu.ro

research focused mainly on color processing of the
scanned documents (using color scans of the maps);
this is also the case of the proposed application. In
addition, because of the many possible color
representations of the contour lines (although shades
of brown are very common, there is no certain rule
concerning the color) the segmentation method is
rather semiautomatic: the user interface offers a color
palette, from which the user can choose the best
match.

Another problem, which makes segmentation
even more difficult, is caused by the false colors, a
result of the raster digitization of the map, and by the
color halftoning technique used in the printing
process. As further shown, the resulting noise is very
difficult to remove without affecting the thin
contours.

Thus, to overcome aliasing and false color
problems, Hedley [1] develops a gradient
thresholding method, which utilizes spatial and color
space information to get rid of noise pixels. Other
authors [2] are employing scanned topographic map
converted into CMYK space, where the value of the
K channel is used in contour line detection. In [3]
Lalonde and Li use L*a*b* and modified histogram
splitting for color pixel classification in order to
obtain a binary image of the contour lines. S.
Salvatore and P. [4] are taking advantage of the HSV
color space to obtain a single color extraction. Their
method implies a quantization of the HSV space to
reduce the complexity and building the hue
histogram of the pixels, that fall in the chromatic
region of the HSV cone, the black or white pixels not
being taken into consideration. Dupont et al. [5] use
a watershed divide algorithm in RGB space to assign
a pure map color to each pixel. [6] and [7] isolate the
different map layers, which all contain a dominant
color, by transforming the RGB to the L*u*v* color
space. Then they determine the peaks in the
histogram of the u*, v* coordinates which
correspond to the color clusters. Working directly on
gray-level Chen et al. [8] are getting the contour line
segments by extraction of all of the linear features
from histogram analysis and supervised
classification. In [9], lines are removed from the
image using a novel algorithm based on quantization
of the intensity image followed by contrast limited
adaptive histogram equalization.

A slightly greater attention reflected on a larger
number of articles, has been shown to the second
aspect: binary image processing and automatic
reconstruction. Thus, many articles treat only the
reconstruction problem, considering the contour lines
already segmented and separated from the other
layers. Arrighi and Soille [10] apply morphological
filters to the resulted binary image for noise
reduction and then try to reconnect the broken
contour lines before a thinning procedure. Their
reconnection algorithm uses local information: the

Euclidean distances between the extreme points of
the curves and their directions are combined for the
joining decision. L. Eikvril et al. [11] reconnect the
contours using a line tracing technique. An
interruption is resolved by searching from an end
point of a line. The corresponding end point might be
found within a sector around the current direction.
The use of Thin Plate Spline interpolation techniques
are suggested by [12].

D. Xin et al. [13] also use mathematic
morphology to filter the binary image [14]. After
thinning the contour lines, they extract a set of key
points using the c-means algorithm. These key points
become input in the GGVF (Generalized gradient
vector flow) snake model used for extracting the
curves. Shimada et al. [15] suggest a multi-agent
system to solve the problem of contour line
reconstruction. The purpose of each „tracing agent”,
initialized by the user, is to follow a specific contour.
When interruptions or other problems are
encountered, it’s the role of a supervisor agent to
decide which route to follow. S. Salvatore and P.
Guitton [4] use the global topology of topographic
maps to extract and reconstruct the broken contours.
Their reconstruction technique is based on two
computational geometry concepts: Voronoi diagrams
and Delaunay triangulations. The method is inspired
from the previous work of [16] and [17] focus on the
reconstruction of contour lines using a method based
on the gradient orientation field of the contours. A
weight is assigned to each pair of end-points
according the force needed by its potential
reconstructed curve to cross the field. The solution is
then found by solving a perfect matching problem.

Most of the reconstruction methods discussed
above use only local information and few include
information about the global topology of the contour
lines. This results in poor reconstructions, with many
unsolved gaps or topological errors (ex. intersecting
contours), especially in maps with a high curve
density.

2 APPLICATION FOR A SEMIAUTOMATIC
CONTOUR LINE EXTRACTION FROM
SCANNED TOPOGRAPHIC MAPS

This application aims to be a solution for a
semiautomatic procedure for extracting contour lines
from raster images of scanned topographic maps,
avoiding the time consuming effects of manual
vectorization by reducing the human intervention as
much as possible. Furthermore, in order to view the
result of isoline extraction, the application builds a 3-
dimensional model of the map terrain.

A raster to vector conversion of the contour lines
from a scanned map implies two major steps: color
image segmentation for obtaining a binary image of
the isolines and the binary processing of this image
for curve recognition. At the end of each stage, a

limited intervention of the user is needed to choose
the color (colors) which best isolate the contour lines
and a correction of the errors produced by the

automatic vectorization, respectively. Fig. 1 shows
the processing-pipeline of the application.

Figure 1: Processing-pipeline of the application

2.1 Color Segmentation of the Scanned Map
Even though the color of the contour lines is not

necessary unique, a color segmentation of the
scanned map is required for the extraction of all the
elements which have the same color with the
isolines. But before any segmentation algorithm, a
preprocessing of the raster image is indispensable.

2.1.1 Image smoothing
The raster image coming from the scanner has

usually plenty of noise, originating from the
scanning process or from the map itself, which was
printed on paper using a halftoning technique. The
computation of the new values on each of the color
channels is accomplished by calculating a mean of
the values in a neighborhood N. Local smoothing of
the image can remove some of the impulse noise
(salt and pepper), but it can also affect the thin
contours, like the isolines. For this reason, the
smoothing has to be applied selectively, avoiding
strong filters, even though not all the noise would be
removed.

In color processing, one of the most common
filters is the vector median filter. The algorithm
implies scanning the image with a fixed-size
window. At each iteration, the distance between each
pixel (x) and all the other pixels within the window is
computed, the pixel which is “closest” to all the
other pixels will be considered the “winning pixel”,
thus replacing the central pixel. The distance is based
on a norm (L), which is often the Euclidean norm.

Another filter used for the same purpose is the
gaussian filter, also known as gaussian blur. After
approximating a convolution matrix based on the
2D-gaussian function, a convolution between this
matrix and the image is performed, the resulting
image being a smoothed, blurred version of the
original image. The blur level is proportional to the

size of the convolution matrix.
For filtering the scanned image we chose a

selective gaussian filter, because it offered the best
results without affecting the fine details, such as the
contour lines. The algorithm differs somewhat from
the classical gaussian filter, because the convolution
is applied only between the mask and the
corresponding image pixels, which have a similar
color with the central pixel. From a mathematical
point of view, similar colors means that the
Euclidean distance between the two vectors from the
RGB space is below a certain threshold:

() () ()222 bgrd ∆+∆+∆= , with thresholdd ≤ ..
Fig. 2 shows the smoothing results using the three
filters described above. As it can be noticed, the last
filter has issued the best outcome, despite using a
map strongly affected by halftoning.
2.1.2 Color quantization of the filtered image

In many cases, the number of different colors in
an image is far greater than necessary. In the case of
scanned maps, this feature becomes even more
evident, because unlike other images, maps consisted
of a reduced set of colors before being saved in raster
format. Moreover, in order to classify the colors
from the map, a reduced complexity of the process is
essential.

The idea behind all quantization algorithms is to
obtain an image with a reduced set of colors as
visually similar with the original image as possible.
A well-known algorithm, fast and with good results
on a large amount of images is Heckbert’s Median-
Cut algorithm. Given a certain number of colors
wanted to be obtained, the goal of this algorithm is
that each of the output colors should represent the
same number of pixels from the input image. The
resulting quantized images for 128 and 1024 colors
respectively are shown below.

a) b)

c) d)
Figure 2: Noise filtering of the scanned image
a) original (unfiltered) image; b) vector median filter
c) gaussian filter; d) proposed method (selective gaussian filter)

2.1.3 Color clustering using K-Means algorithm
The acquired result from the previous step is

very useful, because on the basis of the reduced set
of colors we can build a histogram, whose local
maxima will approximate the color centers, therefore
the cluster centers we want to detect. Thus, the color
histogram becomes much easier to build and store
the number of colors being significantly reduced.

a) b)

Figure 3: Quantization results for different color
numbers. a) 128 colors; b) 1024 colors

What the color histogram provides are actually
the input data in the K-Means algorithm. Instead of
choosing as initial cluster centers some random color
values, the selected colors will be very close to these
centers, such that the algorithm can converge rapidly
to a optimal solution. These initial cluster centers
will be extracted from the local maxima of the
histogram, thereby the actual number of these
clusters will vary according to each particular map.

As color similarity metric we chose the
Euclidean metric in the chrominance plane (a*, b*)
of the L*a*b* color space and not in the RGB space
for perceptual uniformity reasons. K-Means is an
unsupervised clustering method, which means that
the algorithm is parameterless, an advantage for our
purpose. To mention some of the advantages and
disadvantages of the method:

Advantages:

• The algorithm offers flexibility, the vectors can
easily change the clusters during the process

• Always converging to a local optimal solution
• Fast enough for the majority of the applications

Disadvantages:
• The clustering result depends on the initial data

set
• The optimal global solution is not always

guaranteed
Through the use of the local maxima from the

color histogram as the initial data set, precisely these
two disadvantages will be eliminated. Not being a
random data set, the algorithm’s convergence is
mostly guaranteed.

As described in Fig. 5 the user can easily choose
one or more colors from the resulting color clusters
which best match the color of the contour lines
(brown in this case). The application will then extract
all the pixels from the image that correspond to the
cluster of the selected color/colors. The resulting
binary image will become input in the next stage:
contour line vectorization.

a) b)
Figure 4: The background impact on contours line
binarization. a) incomplete segmentation due to a
single brown shade selection; b) complete
segmentation by selecting more then one brown
shade

Not always, though, all contour lines from a map
can be extracted by choosing a single color only.
Due to the way the map was printed on paper,
because the color layers often overlap, the isoline
colors also depend quite much on the background
color. In the above example, when choosing the
brown color, the contours on the white background

will be fully extracted, but those on the green
background will be only partially isolated (Fig. 6).
Therefore, it is necessary in such cases to increase
the cluster numbers and to choose more brown
shades, until the binarization result will be
satisfactory.

a) b) c)

Figure 5: a) Map detail b) Representation of the map colors (input data) in the chrominance (a*,b*) plane; c)
Representation of the color centers in the (a*,b*) plane, following the clustering process.

Figure 6: The original map and the result of the automatic clustering process

2.2 Binary image processing
Apart from the contour lines, the binarized

image created in the previous stage contains many
other „foreign objects”. As a result, a preprocessing
of the binary image is needed for noise removal that
would otherwise significantly alter the vectorization
result.
2.2.1 Binary noise removal

The noise removal can be realized on the basis
of minimum surface criteria that the contours have to
satisfy. The morphological opening operation has
been taken into consideration but the results were not
satisfactory because it removed the very thin contour
lines despite of using the smallest possible
structuring element (3x3).

Another noise removal method was also based
on minimum surface criteria. The idea is to find the
connected components in the image and to count
their pixels. All the components having the number
of pixels below a certain threshold will be

disregarded.
The standard algorithm performs a labeling of all

the connected components from the image by
assigning a unique label to the pixels belonging to
the same component. The algorithm is recursive and
has the following steps:

1. Scan the image to find unlabeled foreground
pixel p and assign it a label L.
2. Assign recursively the label L to all p
neighbors (belonging to the foreground).
3. If there are no more unlabeled pixels, the
algorithm is complete.
4. Go to step 1.
The above recursive algorithm will not be

applied on the entire image, but only within a nn ×
sized window, with n depending on the contour line
density. If the density is high, then a smaller value is
recommended. Therefore, the connected components
having a larger number of pixels then a specified
threshold, located within a nn × sized window, will
be removed. In addition to the speed gain, another

advantage is that the small curve segments and
intermediate points located in the gap between two
broken isolines will remain unaffected, thus not
influencing the subsequent reconstruction procedure.
2.2.2 Contour line thinning

Since the vectorization process would get
unnecessary complicated without reducing the
contour line thickness, a skeletonization or thinning
procedure becomes essential. Another reason for that
comes from the mathematical perspective, because
lines and curves are one-dimensional, which means
that their thickness doesn’t offer any useful
information and may only make the vectorization
process more difficult.

As in [13], we used the modified Zhang-Suen
thinning algorithm [18] for contour thinning. The
algorithm is easy to implement, fast and with good
results for our problem, where it is critical for the
curve end-points to remain unaltered.

The method involves two iterations where,
depending on different criteria, pixels are marked for
deletion:

Let nP , 8,1=n , be the 8 neighbors of the
current pixel ()jiI , , 1P is located above P, the
neighbors are numbered clockwise.

Subiteration 1: The pixel ()jiI , is marked for
deletion if the following 4 conditions are satisfied:
• Connectivity = 1
• ()jiI , has at least 2 neighbors but no more then

6
• At least one of the pixels: 1P , 3P , 5P are

background pixels
• At least one of the pixels: 3P , 5P , 7P are

background pixels. The marked pixels are
deleted.
Subiteration 2: The pixel is marked for deletion

if the following 4 conditions are satisfied:
• Connectivity = 1
• ()jiI , has at least 2 neighbors but no more then

6
• At least one of the pixels: 1P , 3P , 7P are

background pixels
• At least one of the pixels: 1P , 5P , 7P are

background pixels. The marked pixels are
deleted.
If at the end of any subiteration there are no

more marked pixels, the skeleton is complete.

Figure 7: Before and after the thinning process

Following the skeletonization process the
resulting image can contain some „parasite”
components like small branches which may affect
the curve reconstruction. To remove these branches a
combination of morphological operations will be
used. First of all, the maximum size of the branches
has to be established. The branches and segments
with the length below this threshold will be removed,
but all the other will not suffer any change at all.
This restriction is required for the pruning algorithm.
The chosen threshold or the length of the segments
which will be deleted corresponds to the n number of
iterations.

The pruning algorithm has 4 steps that involve
morphological operations:
1. n iterations of successive erosions using the
following structuring elements with all the 4 possible
rotations:

















000
011
000

 rotated 90° and
















000
010
001

 rotated 90°

2. Find the end-points of all the segments from the
previous step.
3. n iterations of successive dilations of the end-
points from step 2, using the initial image as a
delimiter.
4. The final image is the result of the reunion
between the images from step 1 and 3.

Figure 8: Before and after the pruning algorithm

As a result of the skeletonization and even after
the described pruning process, the curves may still
have some protrusions and sharp corners. Hence, a
contour smoothing procedure could be useful for a
more natural and smooth aspect.
2.2.3. Reconstruction of the contour lines

One of the most complex and difficult problems
in the automatic extraction of contour lines is the
reconnection of the broken contours. Linear
geographical features and areas overlap in almost all-
topographic maps. If two different linear features
cross each other or are very close to one another, the
color segmentation will determine the occurrence of
gaps or interruptions in the resulting contours. The
goal of the reconstruction procedure is to obtain as
many complete contours as possible, i.e. contours
that are either closed curves or curves which touch
the map borders. Every end-point of a curve should
be joint with another corresponding end-point or
should be directed to the physical edge of the map.

N. Amenta [16] proposed a reconstruction
method which uses the concept of medial axis of a
curve λ: a point in the plane belongs to the medial
axis of a curve λ, if at least two points located on the
curve λ are at the same distance from this point.

Figure 9: The thin black curves are the medial axis
of the blue curves

Amenta proved that the „crust” of a curve can be
extracted from a planar set of points if the points that

describe the curve are sampled densely enough. His
assumption was that the vertices of the Voronoi
diagram approximate the medial axis of the curve.
When applying a Delaunay triangulation to both the
original set of points and the set of the Voronoi
vertices, every edge of the Delaunay triangulation
which joins a pair of points from the initial set, forms
a segment of the reconstructed curve (the crust).

Summarily, Amenta’s reconstruction method is
the following:
1. Let S be a planar set of points and V the vertices of
the Voronoi diagram of S. S ′ is the union of S and V.
2. D is the Delaunay triangulation of S ′ .
3. An edge of D belongs to the crust of S if both end-
points belong to S.

a) b) c)

d) e)
Figure 10: Result of Amenta’s reconstruction method. a) Initial set of points; b) Voronoi diagram; c) Delaunay
triangulation (with the crust highlighted); d) original contours; e) Reconstructed contours

As it can be noticed, not all the gaps are being
filled. Therefore, only a part of the curves will
become complete after applying the method
described above. Repeating the algorithm using the
binary image of the reconstructed curves as input
would produce only minor changes. Therefore, in
order for a new reconstruction to be successful, all
the newly completed contours have to be deleted
from the input image.

At the end of the reconstruction algorithm the
final result of the automatic processing will be
presented to the user for a manual correction of the
remaining errors. Some of these errors are
inevitable, an automatic error recognition being
very difficult to implement. A common example
are the errors that occur because of the elevation
values which often have the same color as the

contour lines and are inserted between them (see
Fig. 11).

Figure 11: Errors resulting from the elevation
values

2.3 Contour line vectorization and
interpolation

The application automatically verifies if the list
of contour lines contains only complete contours.
When there are no more incomplete isolines left,

the user will be assisted in the following procedure,
namely assigning an elevation to each contour line.
The isolines can be then saved in a vector format
and the resulting DEM based on the original map
can be viewed. The most common representation
used when saving a curve in a vector format, also
employed in our case, is the well-known Freeman
chain-code representation.

For a good 3-dimensional terrain visualization,
the contour line elevations are not sufficient,
because a step disposal wouldn’t look natural. For
this reason, different interpolation techniques have
been developed, some of them use a 3D version of
the Delaunay triangulation, other use cubic
interpolation etc.

Figure 12: Chain-code example. a) coding the 8 directions; b) initial point and edge following

For our application we used a simpler but very
efficient technique with good results. The method,
implemented by Taud [19], uses a series of
morphological operations on a raster grid (similar
to a binary representation of the extracted contour
lines, where instead of a binary 1, the elevation
values of the isolines are stored). Through the use
of successive erosions or dilations, new families of
intermediate contour lines are generated and their
elevations are computed based on the neighboring
contours. The process is repeated until the desired
„resolution” is obtained, i.e. the elevation values of
the majority of the intermediate points are known.
Thus, an intermediate curve located between two
isolines corresponds to the medial axis of the two.

3 RESULTS

Our tests have been carried out on scanned
images of relatively complex topographic maps,

with many colors and overlapping layers. The
images represent older or more recent maps
scanned in high quality JPEG or TIF file formats.

The algorithm was tested on more than 50
scanned images of relatively complex topographic
maps, with many colors and overlapping layers.
Some of the scanned maps have a poor quality,
being affected by noise caused mainly by the
printing procedure (halftone) or by the old paper. In
the table below, we present an evaluation of the
algorithm for 7 different maps. The overall success
rate (number of solved errors resulting in complete
contours from the total number of errors from the
segmentation process) was 83.35%. Out of 64
unsolved gaps or incorrect contour connections 12
came from the elevation values.

Table 1:
Quality Curve

Size
No. of
contours

No. of
gaps

No. of gaps filled
correctly

Unsolved
gaps

Wrong
connections

Success
rate

Map1 medium thin 9 26 24 2 0 92.31
Map2 medium thick 9 26 23 3 0 88.46
Map3 poor thick 17 74 57 13 4 77.03
Map4 high thin 10 24 18 5 1 75
Map5 poor thin 18 38 30 6 2 78.95
Map6 high thick 16 50 44 6 0 88
Map7 poor thin 52 135 113 20 2 83.7

a) b)

c) d)

e)
Figure 13: a) scanned map; b) result of color segmentation; c) processed and thinned binary image; d) result of
automatic contour line reconstruction; e) 3D-DEM

a) b)

c) d)

e)
Figure 14: a) scanned map; b) result of color segmentation; c) processed and thinned binary image; d) result of
automatic contour line reconstruction; e) 3D-DEM

4 CONCLUSIONS

This work was dedicated to the automatic and
semiautomatic processing of scanned maps, aiming
the vectorization of contour lines and building a
digital elevation model on their basis. Attaining this
objective has implied a number of stages discussed

in detail throughout the work. We will recall the
most important ones:

1. The quality of the contour line extraction
process depends to a great extent on the color
processing module. Despite the problems of color
image segmentation, using the proposed methods
we obtained good results even on maps that were

strongly affected by noise, coming either from the
scanner or from the map itself (halftone, salt-and-
pepper, false colors etc.). Reducing the complexity
through a quantization of the color space and
through the use of CIELab color space, more
perceptual uniform then RGB, a proper color
clustering has been attained. Nevertheless, if the
original map is poor an automatic color
classification will fail.

2. The second stage implied a processing of the
resulting binary image from the previous step and
the implementation of an automatic contour
reconstruction method. The morphological filtering
and thinning operations applied on the binary image
succeeded to remove most of the noise and
unnecessary elements. Because isolines are often
the lowest foreground layer of a map, many other
features were superimposed on these, leading to
interruptions and broken contours. The efficiency
of the gap-filling algorithm consists in both a global
and local approach. Thus, using the geometric
properties of the curves, the achieved results were
satisfactory, most of the gaps being automatically
solved.

Despite the good results obtained on a large
amount of scanned maps, a completely automatic
map processing technique is unrealistic and the
semiautomatic one remains an open problem.

The future development prospects are related
mainly to two aspects:
• Image segmentation (color processing)
• Improvement of the automatic reconstruction

techniques
It has been proven that the result of contour line

extraction is strongly related to the quality of the
segmentation process. The background color on
which the contours have been printed also plays a
major role in the extraction, because it has a big
influence on their color. In this respect, algorithms
that take into account the background color for
every foreground pixel should be searched for, in
order to obtain a better segmentation technique.

As an improvement of contour line
reconstruction, adding more global information
about isolines and introducing OCR techniques for
extracting elevation values, could be useful. Thus,
some of the common causes that lead to broken
contours can be eliminated. At the same time, an
automatic or semiautomatic procedure for assigning
altitude information to the extracted isolines can be
taken advantage of.

5 REFERENCES

[1] M. Hedley, H. Yan: Segmentation of color
images using spatial and color space
information, Journal of Electron. Imaging, Vol.
1, pp. 374-380 (1992)

[2] R. Q. Wu, X. R. Cheng, C. J. Yang: Extracting
contour lines from topographic maps based on

cartography and graphics knowledge, Journal
of Computer Science & Technology 9(2), pp.
58-64 (2009)

[3] M. Lalonde, Y Li: Contour Line Extraction
from Color Images of Scanned Maps, In
Proceedings of the 9th international Conference
on Image Analysis and Processing, Vol. I, Ed.
Lecture Notes In Computer Science, vol. 1310,
Springer-Verlag, London, pp.111-118 (1997)

[4] S. Spinello, P. Guitton:. Contour Lines
Recognition from Scanned Topographic Maps,
Journal of Winter School of Computer
Graphics, Vol.12, No.1-3 (2004)

[5] F. Dupont, M. Deseilligny, M. Gondran:
Terrain Reconstruction from Scanned
Topographic Maps, Proceeding Third
Internationl Workshop Graphics Recognition,
pp. 53-60 (1999)

[6] N. Ebi, B. Lauterbach, W. Anheier: An image-
analysis system for automatic dat:-acquisition
from colored scanned maps, Machine Vision
and Applications, 7(3), pp. 148-164 (1994)

[7] L. W. Kheng: Color Spaces and Color-
Difference Equations, Technical Report, Dept.
of Computer Science, National University of
Singapore (2002)

[8] Y. Chen, Runsheng Wang, Jing Qian:
Extracting contour lines from common-
conditioned topographic maps. Geoscience and
Remote Sensing, IEEE Transactions on, 44(4),
pp. 1048-1057 (2006)

[9] A. Pezeshk, R. L. Tutwiler: Contour Line
Recognition & Extraction from Scanned Colour
Maps Using Dual Quantization of the Intensity
Image, Proceedings of the 2008 IEEE
Southwest Symposium on Image Analysis and
interpretation, pp. 173-176 (2008)

[10] P. Arrighi, P. Soille: From scanned topographic
maps to digital elevation models, Geovision
'99, International Symposium on Imaging
Applications in Geology, pp. 1-4 (1999)

[11] L. Eikvil, K. Aas, H. Koren: Tools for
interactive map conversion and vectorization,
International Conference on Document
Analysis and Recognition, Third International
Conference on Document Analysis and
Recognition, Vol. 2, pp. 927-930 (1995)

[12] A. Soycan, M. Soycan: Digital Elevation
Model Production from Scanned Topographic
Contour Maps Via Thin Plate Spline
Interpolation, The Arabian Journal for Science
and Engineering Science, 34(1A), pp. 121-134
(2009)

[13] D. Xin, X. Zhou, H. Zhenz: Contour Line
Extraction from Paper-based Topographic
Maps, Journal of Information and Computing
Science, 1(275–283) (2006).

[14] J. Du, Y. Zhang: Automatic extraction of
contour lines from scanned topographic map,.
Geoscience and Remote Sensing Symposium,

IGARSS '04, Proceedings, IEEE International,
Vol. 5, pp. 2886-2888 (2004)

[15] S. Shimada, K. Maruyama, A. Matsumoto and
K. Hiraki: Agent-based parallel recognition
method of contour lines, In Proceedings of the
Third international Conference on Document
Analysis and Recognition, Vol. 1, IEEE
Computer Society, Washington, DC, pp. 154
(1995)

[16] N. Amenta, M. Bern, D. Eppstein: The Crust
and the Beta-Skeleton: Combinatorial Curve
Reconstruction, Graphical models and image
processing, 60(2), pp. 125-135 (1998)

[17] J. Pouderoux, S. Spinello: Global Contour
Lines Reconstruction in Topographic Maps, In
Proceedings of the Ninth international
Conference on Document Analysis and
Recognition, Vol. 02, ICDAR, IEEE Computer
Society, Washington, DC, pp. 779-783 (2007)

[18] T. Y. Zhang, C. Y. Suen: A fast parallel
algorithm for thinning digital patterns.
Commun, ACM 27, 3, pp. 236-239 (1984)

[19] H. Taud, J. Parrot, R. Alvarez: DEM
generation by contour line dilation, Comput.
Geosci, 25, 7, pp. 775-783 (1999)

