Statistical Analysis of Multilayer Perceptrons Performances

Remus BRAD, Ioan MIHU and Macarie BREAZU

“Lucian Blaga” University of Sibiu
Computer Science Department
Bulevardul Victoriei 10, 2400 Sibiu, Romania
rbrad/mihuz/mac@cs.sibiu.ro

Abstract

The paper is based on a series of studies on the learning
capabilities of multi-layered perceptrons (MLP). The
complexity of these nonlinear systems can be varied, acting
for instance on the number of hidden units, but we will be
confronted with a choice dilemma, concerning the optimal
complexity of the system for a given problem. By the mean
of statistical methods, we have found that the effective
number of hidden units is smaller than the potential size;
some units have a "binary" activation level or a time
constant activation. We also prove that weight initialization
to small values is recommended and reduce the effective
size of the hidden layer.

1 Introduction

We have study experimentally the problems of training
different architectural sizes of MLPs. Investigations are
based on statistical methods and don’t make use of
theoretical concepts concerning the system complexity [1]

(2].

Being non-linear systems, transfer function is computing by
composing the non-linear elementary functions of the cells.
One can modify the complexity of the system by acting for
instance on the hidden layer size. Therefore, we question
about the optimal complexity of the system for a given task.
This general problem is fundamental and exceeds the
Neural Networks (NN) field; it requires the development of
a complexity theory for the sample learning systems and
leads to various research directions.

We have defined the potential size as given by the number
of hidden units and the effective size as a result of network
training on a given problem. Retrieving valuable
information about the effective number of hidden units can
be motivated by a great number of applications. It is
difficult to find a compromise in terms of complexity,
conducting to a high performance network.

In section 2, we present the framework of our experiments.
Section 3 shows the result of our statistical investigations
and defines the effective size of the MLP tested. A
performance analysis is performed in section 4, by
decomposing error in bias and variance terms.

2 Data Sets and MLP Architecture

We have employed in all our experiments, training and
validation sets derived from the classification problem
known as the Breiman waveforms [3]. This is a
classification problem defined from three waveforms (4;,
h,, h3), each one expressed as convex combination of two

waveforms with an additional gaussian noise. The first
class elements are defined by:
x=rhy+(1-r)hy +y 1)

where r is a random variable €[0,1] and 7y is the gaussian
noise. The two other classes, 2 and 3, where obtained using
the waveforms 4;, h; and h,, h; respectively. The problem is
nonlinear, each class having different variance arrays. Each
waveform was sampled in a real number vector of size 21.
A set of 3000 samples was used in the generation of
training sets by a uniform distribution law. A set size varies
between 300 and 1000 samples. Validation set consists of
5000 patterns.

The MLP employed has the following architecture: 21 input
units, X hidden units and 3 output units. The size X of the
hidden layer is modified during our investigations in the set
(0, 5, 10, 15, 35, 60). The transfer function is hiperbolic
tangent as recommended by [4]. MLPs were builded in the
SN 2.8 NN simulator.

3 The Effective Number of Hidden Units

The number of hidden units governs the complexity of a
MLP system. We will name it potential complexity of the
system. In contrast, the effective capacity of the system will
depend not only on the model but also on the system
behavior on a given task [5].The last mentioned quantity

could be specify the network architecture required for a
special problem. The relationship between the potential
complexity and the effective capacity is crucial to be
apprehended, but difficult to measure and formulate. We
have experimentally explored the MLP dynamic behavior,
by tracing the hidden layer units activation and computing
statistical measures.

3.1 Hidden Units Correlation

We first question about a possible redundancy between
hidden units (h.u.) activations and the possibility to reduce
hidden layer’s size. The correlation between two h.u. can be
measured by:

20 =30, () = x))

- _ _ @
\/Z(xl-(t)—x,-)22<x,-<z)—x,)2

with x? - activation of the i-th h.u. for sample p, p — index
on the total number of samples presented N, X,- average of
the i-th h.u. activations over all N samples.

Table 1 presents statistics over correlation values. As it can
be observed, correlations are weak and redundancy could

not be emphasized using this measure.

Table 1: Correlation statistics.

Interval / Percentage
[0,0.1) | [0.1,0.2) | [0.2,0.3) | [0.3,0.4) [[0.4,0.5) | Average
hidde
nunits
5 44% 39% 14% 3% 0% 0.3736
15 55% 27% 11% 4% 2% 0.1839
35 42% 31% 16% 7% 3% 0.1698

Redundancy may be evidenced by the use of high order
correlations, but result could be difficult to obtain and
explain.

3.2 Hidden Units Activations

Each hidden unit is taking part in a certain manner and with
a particular importance to the global network response. It is
essential to identify cells behavior and evolution while
training.

In the first test, weights where initialized using random
values in [-1,1]. During the training stage, we will trace the
hidden unit’s activation values, on a test set of 1000
samples. For each unit, activation histograms where drawn,
as show in figure 1. In this case, a 15 hidden cells MLP was
considered. As we were expecting, after a number of
epochs, cells behavior remain unchanged, some of them
responding with the same activation, as depicted by
histograms. Experiments have been concluded on different

hidden layer networks and one could observe the same
phenomenon.

Figure 1: Hidden layer activation histograms after a) 5;
b) 50; c¢) 200; and d) 1000 epochs, for 15 h.u., 300 training
samples and weights initialization in [-1,1]

In the case of a weight initialization with small values, in
the range [-0.01, 0.01], about 300 epochs will be required
in “assigning” a special task to each hidden cell (see figure
2). One could observe a greater number of “constant” or
“binary” h.u. activations. Starting from 300 epochs, training
will only refine the role played by each unit.

Figure 2: Hidden layer activation histograms after a) 5;
b) 50; ¢) 200; and d) 1000 epochs, for 15 h.u., 300 training
samples and weights initialization in [-0.01,0.01]

Investigations conducted on various architectures and
training set sizes are reflecting the same conclusion: the
“effective” number of h.u. is smaller than the potential one

due to almost constant activations of some cells. A binary
activation form could also be observed.

3.3 Activations Variance
The histograms presented below are slides in time of the
network state, acquired during training. A synthetic point of
view could be obtained if each h.u. histogram will be
represented by a value followed while training. Variance of
the i-th h.u. is defined by:

var, = %guf’ %) 3)

where: p - index on the validation set, N- number of
P

validation samples, x; - activation value of the i-th h.u. on
sample p, Xx;- average of i-th cell activations for all

samples.

Variance

o S
o

o 100 200 300 400 GO0 60O Fo0 8OO 500 1000
Epochs

a)

1.8

1.6

1.4

1.2

Variance
= =
o) -

=
.

=
&)

k=3

0 200 400 [=i0] 800 1000
Epochs

b)

Figure 3: Hidden layer activation variances for 15 h.u.,
weights initialization in a) [-1,1] and b) [-0.01,0.01]

Analyzing the results shown in the figures below, one can
deduce that cells with high order variances are the most
active ones and a certain number of them could be
considered as inactive. Comparing the two initialization
cases, we can conclude that initialization with small
weights is leading to a more accurate classification of units
in the two categories. Between the most active h.u., high
variance is also achieved by the binary response units.

3.4 Covariance eigenvalues

Hidden unit activation could be seen as a point in n-
dimensional space. The size of this space can be retrieved
by the rank of the covariance array of units activations. We
are seeking a correlation of this points. In order to acquire
the number of orthogonal axes for our space, we will first
compute the covariance between two units, i and j:

covy = S0/ = x)xf 3)
14

with the same notations as equation (3). Using the
covariance array, which is symmetrically, we can estimate
the effective size by the number of nonzero eigenvalues.
Figures 4 show the time evolution of eigenvalues, for two
MLP training cases. Values are sampled every 50 epochs.

Rank determination can be achieved by selecting a
threshold. All eigenvalues below the given threshold are
considered zero. Since for all architecture take into account,
eigenvalues are very small, it is difficult to define the value
of the threshold. Chosen as a fraction of the highest
eigenvalue:

_ max_eigenvalue

5
; ©)

for instance /=10, in the case of the 15 h.u. MLP, the
effective number will be 12 and in the case of the 60 h.u.,
about 20. In table 2, we present the effective capacity of the
hidden layer for several architectures and thresholds.

Thr

Table 2: The effective number of hidden units

number of hidden units
f 15 35 60
10 12 26 20
40 14 28 24
60 15 30 28

In any case, the effective capacity of the system is smaller
than the potential one. The bigger is the size of the hidden
layer, the smaller is the effective number. For the 15 h.u.
MLP, no sensitive improvement was expected. This
particular architecture seems to be suitable for the
waveform problem. Information regarding the effective
capacity could be used in pruning algorithms.

ﬁ!’“

f“’l"g‘
Tanes

Epochs

a)

Epochs

b)

Figure 4: Evolution of covariance eigenvalues for 15 h.u.,
weights initialization in a) [-1,1] and b) [-0.01,0.01]

4 Performance Analysis

In the previous section, we made a hidden layer analysis,
but we never question about the network response when the
number of hidden cells is varied. In this case we will
describe some of the experiences that will hope explain the
influence of the hidden layer in generalization and training
error evolution [6].

4.1 Hidden Layer Size

To discover the performance dependence of the hidden
layer, we will measure the error when the size will be
changed from 0 to 60 hidden cells. The training set will
consist of 300 different samples, used for all the 10
networks tested. The result will be the average of all
network's behavior. The validation set will be identical in

our case; 5000 samples will be tested. Figure 5 shows the
results after 750 epochs, with a gradient descent error
minimizing technique.

Generalization error decreases and has a minimum at about
100 epochs. For all cases, it’s increasing with the number of
training epochs. Distinction in evolution can be observed.
The smallest error obtained is for the 5 hidden cells
network, but the error value at the end of training is
increasing with the size of the hidden layer. In conclusion,
one can say that: the larger is the network, the worst are the
results in generalization. However, this rule is inadequate if
we consider the point of minimum generalization error.

If we examine the same figure, the over-training aspect
seems to be emphasized for medium size networks (10-15
hidden cells) and imperceptible for large (60 hidden cells)
and small networks (0-5 hidden cells).

| O hidden
4.0 -4
3.50 ! 35 hidden
|i| 0 Tidden
1
.00~
i
" i
o
M
15}
=1
1.00
0.00 200.00 400.00 §00.00 Epochs

Figure 5: Validation error evolution corresponding to
different architectures (from top to bottom, at the end,
hidden layers have 60, 35, 15, 10, 0, 5 cells)

Training error evolution depicted in figure 6 is totally
different. Networks without hidden layer have a constant
and significant error; performance improved by the 5 h.u.
network. For any moment after 100 training epochs, we can
conclude that large size networks are learning faster and the
error is decreasing with the number of hidden units.
However, we will examine consciously this phenomenon.

4.00 0 hidden
g

3.50 10 hidden
T8 e
35 fidden
3.00 B0 hidden

Error

0.00 200.00 400.00 G00.00 Epochs

Figure 6: Training error evolution corresponding to
different architectures (from top to bottom, at the
end, hidden layers have 0, 5, 10, 15, 35, 60 cells)

4.2 Bias and Variance
The generalization error can be decomposed in two
components: the bias and the variance [1]:

bias =%i||}<xi>—c<x,» | ©

var = Eg —bias

where: N - number of samples; c(x;) - desired output for
the i-th sample; y(x;) - the average of the 10 networks
output for the i-th sample; Eg - generalization error

Theoretically, during the learning stage, the bias is
decreasing and the variance is increasing with time. Due to
their opposite evolution, a compromise concerning the two
1s difficult to consider. In our case, we have drawn for the 6
types of architecture, the bias (figure 7) and the variance
evolutions (figure 8). At 750 epochs, MLPs with 5 hidden
units have the smallest bias. For all networks with hidden
layer, the variance is increasing, after a small hesitation at
about 50 epochs.

Two points of interest are present in the previous pictures:
the moment of minimum validation error and the final
training moment at about 750 epochs. The curves drawn in
figures 9 and 10 are obtained by saving weights values in
the two cases discussed and by computing errors, bias and
variance.

4.00

60000 Epochs

0 hidden

Figure 7: Bias evolution for different architectures (from
top to bottom, at the end, 0, 60, 35, 15, 10, 5 h.u.)

0 hidden

1.30

1.20

5 hidden

110

35 hidden

1.00

0.90

0.80

0.70

0.60

050

0.40

0.30

020

010

0.00

B0 hidden

Figure 8: Variance evolution for different architectures
(from top to bottom, at the end, 15, 10, 5, 35, 60, 0 h.u.)

540 Train

) Test™
220 = Bl
2,00ty ar
1.40 \ R S
1.20 _\ e
1.00
0.50
0.20

poo 10 20 30 40 50 B0 h.u.

Figure 9: Errors, bias and variance depending of hidden
layer width, for weights saved at validation error minimum

2,50 Train

ERTI DU . | I et
S Bias

220 i

2.00

180k

1,60

140 \

1.20 \ St

1.00 T

0 50 \
0404

0.20

T

1] 10 20 30 40 a0 60 h.u.

Figure 10: Errors, bias and variance curves depending of
hidden layer width, for weights saved at the end of learning

In this case, bias and variance evolutions are different from
those described by Gemann et al [1]. A MLP whose size
was underestimated for a given task, will have limited
degrees of liberty and will be too "rudimentary" to solve the
problem. Therefore, the bias will be important and the
variance weak. An overestimated MLP will have a large
number of degrees of liberty and the process of
optimization from different training sets will lead to
different solutions. Thus, the corresponding variance will
be significant.

Bias isn't always decreasing with complexity but after
reaching a minimum, his further evolution is increasing.

Following training and validation errors decreasing curves,
we can conclude that large MLP have poor performances.
Bias and variance have opposite evolution when hidden
layer size is augmented. There is a moment when validation
error reaches a minimum, corresponding to the information
offered by the learning stage.

Compromise is achieved sometimes, by inserting in
learning samples an important bias, who will support
generalization. This phenomenon has no rigorous
explanation, but some authors [7] have explored and
analyzed deeply the problems discussed.

5 Conclusions

In the studies completed above, based on single hidden
layer MLP, it has been possible to derive interesting results
on network performances. In particular, we have been able
to give some answers to the problems of MLP complexity.
In addition, we show that it is possible to find a
compromise between the size of hidden layer and the
information of training samples. This analyses is only a first
step in this direction and many questions remain
unanswered. More work is required to test the significance
of some of the observations. It would be of interest to
analytically study the compromise of information versus
complexity in learning. Finally, other possible directions of
investigation include the dynamic behavior of MLP and the
error surface.

6 References

[1] G. Geman, E. Bienenstock and R. Dourset, “Neural Networks
and The Bias Variance Dilemma”, Neural Computation 4, 1994,
pp-1-58

[2] M.A. Kraaijveld and R.P.W. Duin, “The Effective Capacity of
Multilayer Feedforward Network Classifiers, ICPR 94, 1994,
pp.99-103

[3] L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone,
Classification and Regression Trees, Wadsworth Inc., Belmont
CA, 1984

[4] G.B. Orr and K.-R. Muller, “Neural Networks: tricks of the
trade”, Springer, 1998

[5] J.E. Moody, “The effective number of parameters: An analysis
of generalisation and regularisation in nonlinear learning

systems”, Advances in Neural Information Processing Systems 4,
Morgan Kaufmann, 1992, pp.847-854

[6] R. Brad, “Influences in Multilayer Perceptron Performances”,
Acta Universitatis Cibiniensis, Seria Tehnica, vol XXVII, Editura
Universitatii din Sibiu, 1997, pp.71-76

[71 T. Cibas, P. Gallinari and O. Gascuel, “Experimental

Investigation on the Complexity-Performance Relations in
Multilayer Perceptrons”, ICANN'95, 1995

	Statistical Analysis of Multilayer Perceptrons Performances
	Abstract

