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Abstract

Edge detection plays an important role in many computer vision systems. In this paper, we propose a novel application agnos-

tic algorithm for prediction of probabilities based on the contextual information available and then apply the algorithm for 

estimating the probability of pixels belonging to an edge using surrounding pixel values as local contexts. We then proceed to 

test diferent image transformations as input layers, such as the Canny edge detector. We propose two diferent architectures, 

one single layered and one multilayered, which approach the scaling problem by creating scaled side outputs and combining 

them via a logistic regression layer. We tested our approach on the BSDS500 edge detection dataset with optimistic results.

Keywords Edge detection · Local context · Neural network · Probabilistic method · BSDS500 benchmark

1 Introduction

The process of segmentation selects a set of pixels from 

an image, based on rules and patterns. The labeling of the 

extracted sets allows the user to obtain more information 

from the image. Typical rules for segmentation include the 

grouping of pixels by color, intensity or texture. Neverthe-

less, by targeting information extraction, rules can head 

toward inding edges of objects, areas, speciic shapes and 

volumes, when applied to stacks of images. Automatic anno-

tation of images and video gains more support each year.

Practical applications of image segmentation include 

machine vision, control systems, object detection (for exam-

ple, face detection and pedestrian detection), recognition 

tasks (for example, ingerprint and iris recognition) and last 

but not least, medical imaging. Medical image segmenta-

tion borrows from many general-purpose segmentation tech-

niques but combines them with domain-speciic knowledge 

in order to obtain better results. Shape analysis and volume 

evolution make medical image segmentation important for 

diagnostics and treatment plans.

Recent methods, like deep learning through convolu-

tional neural networks (CNN), proved to give state-of-the-art 

results in 2D benchmarks, but neural network architectures 

for 3D image processing are only now starting to emerge. 

Medical image segmentation integrated these techniques for 

both 2D [1] and 3D [2] segmentations.

In this paper, we introduce a general algorithm for auto-

mated learning, which stands as a basis for various appli-

cations. We provide a description of the algorithm and 

point out diferences from various implementations tested. 

To prove the efectiveness, we have applied and tested the 

algorithm on an edge detection benchmark, with promising 

results. As for now, the algorithm was applied only for 2D 

images, but in the future, we plan to extend it for volumetric 

images, as an application in medical imaging.

2  Related work

Edge detection has been a subject of research for many years, 

with papers as early as 1975 [3]. Since then, a large num-

ber of techniques have been approached, targeting diferent 

aspects of edge detection, like closed contours, human-like 

perception or fast detection. In the following, we provide 

an overview of more recent methods used, organized by the 

main strategy of the algorithm.

In [4], a method based on oriented gradient signals is 

described. These are obtained from splitting the input image 

into the three CIELAB color channels and a texture channel. 

After applying iltering on the channels with 17 Gaussian 

kernels, the results are clustered using a K-means algorithm. 

An image is formed using the result for each pixel on which 
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a non-maximal suppression is applied. So far, only local 

information was used for each pixel. For the global informa-

tion, spectral clustering is used. The probability of a pixel 

belonging to the contour is a weighted combination of the 

local and global information.

Real-time frame rates have been recently achieved using 

random decision for edge detection [5]. Local image patches 

were used as a basis for learning structure labels. These are 

then mapped into a discrete space using a decision tree 

which splits the data based on a decision function. Learning 

was done by independently training the trees in a recursive 

manner using information gain criteria.

Deep learning architectures started to prove state-of-

the-art results at impressive processing speed of 0.4 s using 

the holistically nested edge detection (HED) architecture 

[6]. The networks map whole image to image predictions 

which provide a signiicant advantage as a global informa-

tion method. A convolutional neural network with hierarchi-

cal representations provides the high-level features, visible 

as side outputs of the network. Deep supervision is used 

for training the layers, which are blended using a weighted 

fusion layer to provide the inal image.

Relaxed deep supervision (RDS), proposed in [7], also 

relies on deep learning, but the main diference from HED 

is that RDS accepts as input predictions from other edge 

detectors such as Canny, called relaxed labels. HED itself 

is used as a provider for relaxed labels. The network tries to 

eliminate most of the false positives from all the intermedi-

ate layers.

The current state of the art is another recent deep learning 

approach based on richer convolutional features [8]. Similar 

to HED, it has a phase of producing side outputs, but in 

this case, a VGG16 architecture was used. Instead of using 

only the inal convolutional layers for merging like previous 

approaches did, this architecture encapsulates in a holistic 

manner features from all convolutional layers and then trains 

the network via backpropagation.

Though the research on deep network focuses only on 

developing network architectures and not new techniques, 

other approaches are continually tested in the literature with 

promising improvements for low-level features, with the 

main advantage being that you do not need a powerful video 

card to run these algorithms thus can run on most equipment 

and the results are good enough for further processing. One 

such algorithm which improves the Canny edge detector is 

described in [9]. After applying an improved anisotropic 

difusion ilter, gradient templates are used for four direc-

tions. Then, an adaptive threshold is computed based on the 

histogram of the image, making the output more resilient 

to noise.

Another algorithm of this type revolves around hierar-

chical graph partitioning [10]. The algorithm employed 

is called Divide and Link, and it is used for a hierarchical 

network clustering. Unlike our proposed method, pixels are 

here modeled as nodes in a graph and a dissimilarity order 

between pixels determines the clusters in the graph. The 

regions are then transformed into a boundary map with a 

selection of the largest area of neighbor regions to provide 

the border.

3  Basis for the contextual memory

Before detailing the proposed algorithm, we will present 

some methods and techniques which stand as a basis for the 

concept of contextual memory.

3.1  Logistic regression

For a regression model, where the dependent variable is a 

categorical, the logistic regression can be used. In our case, 

the outcome is binary, where an image pixel belongs to a 

certain group or not. Binary logistic regression is useful for 

estimating the probability of class membership. Useful for 

making such predictions, a single-layer neural network has 

the output probability:

where pi is the probability that the output Yi belongs to the 

class, deined as a sigmoid function of a linear combination 

of the k explanatory variables X, and βj for j = 1,…,k are 

the parameters to be estimated, usually called coeicients 

or weights. The sigmoid function takes any input x∈ℜ and 

outputs a value between zero and one, making it interpret-

able as a probability. This function is also preferred because 

it has a continuous derivative.

The inverse of the logistic function, sometimes called the 

stretch function, is deined as:

There are numerous numerical ways to estimate the 

coeicients [11]; relevant here is the stochastic gradient 

descent. Minimizing a function by following the gradient of 

the cost is called gradient descent. If the loss is accounted 

for the entire training set or a subset of the training set, the 

method is called batch gradient descent. If the batch is the 

size of one, we will have a stochastic gradient descent. For 

each instance i of the training set, we will make a predic-

tion and then sufer a loss. If we apply the backpropagation 

(1)Pr(Yi = 1|Xi) = pi =
1

1 + e−(�0+�1x(1,i)+�2x(2,i)+⋯+�kx(k,i))

(2)y =
1

1 + e−f (x)
,

dy

dx
=

y(1 − y)df

dx

(3)g(t) = ln

(

t

1 − t

)
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algorithm, the weights will be updated according to the fol-

lowing rule:

where βj is the weight for the jth input variable xj, pi is the 

output probability for the instance i, and yi is the label of 

the instance (0 or 1). The learning rate α, usually chosen 

empirically, limits the amount of correction for each coef-

icient. This is the gradient descent in weight space which 

minimizes the root-mean-square error.

Instead, if we want to minimize the relative entropy 

− log(1 − pi) if yi= 1 or − log(pi) if yi= 0, then we will apply 

Eq. (5).

This minimizes the amount of information lost when a 

prior probability distribution Q is used to approximate a 

posterior probability distribution P.

3.2  Ensemble learning

Combining multiple hypotheses in order to obtain a bet-

ter hypothesis is called ensemble learning. Ensembles are 

supervised learning meta-algorithms which, after training, 

can be used to make predictions. The ensemble also repre-

sents a hypothesis. The set of hypotheses which compose the 

ensemble do not necessarily contain the output hypothesis, 

making it likely to better describe the data. If not carefully 

prevented, this can lead to overitting the training data.

As expected, using ensemble methods requires more 

resources (memory and computation time) than single mod-

els. Various techniques make a trade-of between the speed 

of computation, amount of memory used and the accuracy 

of the model.

In the process of designing artiicial neural networks, cre-

ating multiple models and combining them are called ensem-

ble averaging. The ensemble should perform better than the 

individual models because the error averages out. Instead of 

picking the prediction of only one of all the models as many 

ensemble techniques do, all the models are kept and the ones 

which are more prone to error are assigned a smaller weight. 

This can be expressed as a linear combination of experts. 

The output of the ensemble can be computed like in Eq. (6)

with α a set of weights, yj as the jth model prediction. 

Numerically, optimizing α is already a solved problem when 

applying the neural network learning rules.

The properties of the models upon which the ensemble 

averaging is built upon are [12]:

(4)�j = �j + � xj (yi − pi) pi (1 − pi)

(5)�j = �j + � xj (yi − pi)

(6)y(X;�) =

k
∑

j=1

�jyj(x)

1. In any network, the bias can be reduced at the cost of 

increased variance

2. In a group of networks, the variance can be reduced at 

no cost to bias

False assumptions in the learning algorithm lead to bias 

error. High bias leads to missing the correlations between 

the data features and the target outputs (under itting). Sen-

sitivity to small luctuations in the training set causes vari-

ance error. High variance can cause overitting, meaning 

that the model has learned mostly noise instead of general-

izing for unseen data. Given trained models with low bias 

but high variance, the result of the ensemble averaging is 

expected to have both low bias and low variance.

One of the variants of ensemble averaging is the nega-

tive correlation learning. This algorithm attempts to train 

and to combine individual networks in an ensemble in the 

same learning process [13].

Boosting is meta-algorithm which aims to create a 

strong learner from a collection of weak learners. As a 

rule of thumb, a series of weak classiiers are trained with 

respect to a probability distribution and are added to the 

set which is the basis for the strong classiier. This sequen-

tial introduction of weak learners keeps them focused on 

the samples previous learners misclassiied.

AdaBoost, short for “adaptive boosting”, is a type of 

ensemble learning. A boost classiier has the following 

form:

ft (x) is a weighted weak learner, while x is the sampled 

input. For a binary classiication task, the output of the 

learner is considered of class 0, if the value is negative, or 

class 1, if the value is positive. The absolute value of the 

output should be interpreted as conidence in the result.

The output of a weak learner for the sample i is called 

the hypothesis h(xi). At iteration t, a weak learner is cho-

sen and weighted with a coeicient αt. The value of αt 

should minimize Et which is the training error at stage t. 

The error is computed using Eq. (8)

where Ft−1(x) is the boosted classiier built up to the pre-

vious stage and E(F) is an arbitrarily chosen error func-

tion. Recently, convex potential boosters received criticism 

regarding convergence where random classiication noise is 

present [14].

Stacking refers to blending the predictions of multi-

ple machine learning models. With a speciically given 

(7)FT (x) =

T
∑

t=1

ft(x) with ft(x) = �th(x)

(8)E
t
=
∑

i

E
(

F
t−1(xi

) + �
t
h(x

i
)
)

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

A
u

th
o

r
 P

r
o

o
f



U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : Large 10044 Article No : 808 Pages : 13 MS Code : PAAA-D-18-00135 Dispatch : 29-3-2019

 Pattern Analysis and Applications

1 3

combiner algorithm, stacking can represent most if not all 

ensemble techniques. Usually, a logistic regression layer 

is used as the combiner.

3.3  Context modeling

Context modeling describes how the context information 

is structured and maintained. Depending on the problem, 

diferent types of discriminator contexts are useful. Local 

context refers to the aspect of the data examined, as opposed 

to context value, which represents the numeric value of that 

context. The context value will be used for accessing the 

memory structure. The memory takes a context value as 

input and outputs a value used for computing the output 

probability of belonging to a certain class.

When discussing edge detection and describing whether 

a pixel belongs to an edge or not, one of the most important 

aspects to take into consideration is the neighboring pixels. 

For instance, as a context, we can take the top pixel and left 

pixel. The context value for this example would be top pixel 

intensity 255, left pixel intensity 20.

Choosing neighboring pixels means using a local context, 

because we do not input the entire image when deciding if 

the focused pixel is an edge or not. Even more, there is no 

clear rule on how far away we should look when making 

such an assumption.

We can deine contexts as rays, starting from the focused 

pixel and going in a straight line away in a given direction. 

Rays are deined by direction and length. Rays could be cho-

sen from 1 to L, the maximum context length. We deine 

direction by the angle of the ray, and we choose the angle by 

dividing 360 degrees by the number of rays we want to use. 

For example, if we use 8 rays, we have 4 rays, one for each 

axis, and 4 rays for the diagonals, as in Fig. 1, for length 5 

and 8 rays.

The context value need not be only pixel values; we 

can take any function of the pixel values as well. Instead 

of directly using the values of the pixels, we can take the 

numerical derivative of the pixels in the direction of the 

ray. Of course, one can mask or quantize the values of the 

pixels or the value of the derivative. In the case of color 

images, rays for each color channel can be individually taken 

as contexts.

3.4  Resources and hashing as a solution

If we allow contexts of any length to be used, we quickly hit 

the wall of practical limitations. Take, for instance, context 

values as pixels from a color channel which are represented 

as bytes. A context of length only 4 already means  232 pos-

sible values. But not all the values will be relevant, as most 

of the possible values will represent noise.

To overcome this issue, we use hashing functions to 

map them to the chosen data structures. A hashing function 

maps data of arbitrary size to data of ixed size. This makes 

them useful for data structures like hash tables. One at a 

time hash functions are useful for data which comes in byte 

chunks, especially when we want to keep the intermediary 

hash values.

For the current work, we analyzed in particular two dif-

ferent types of hash functions: Jenkins hash function [15] 

and Fowler–Noll–Vo hash function [16]. Both of them are 

non-cryptographic but were chosen for their speed of com-

putation and rather low collision rate.

Both functions can be altered to keep the intermediate 

results of the hash value, useful when working with rays of 

increasing length.

4  An original method for contextual 
prediction

Applied on images, the context modeling part of the algo-

rithm takes as input an image and a position. The position 

is used as a basis for the rays which are modeled as posi-

tion deltas from the focused pixel. The values of the pixels 

are taken from the color channel of the image and are then 

hashed. The result of the hash is the context value, which we 

later use for indexing. As a result, we have as many context 

values (numbers) as the number of contexts.

The memory can be organized as a map with a separate 

table for each context in order to prevent collisions between 

contexts. There are more ways to organize the memory, and 

some suggestions will be discussed in the implementation 

details.

4.1  Model prediction

In order to make a prediction, we have proposed the follow-

ing algorithm:

a b 

Fig. 1  a Position of pixels as rays of length 5; b ray length 3 (green), 

length 4 (blue) and length 5 (orange)
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1. We obtain a value from the memory for each context. 

One way to do that is to index the hash of the context 

value in a table

2. We average all the obtained memory values

3. Convert the average into a probability using the sigmoid 

function

4. Reine the probability using a transfer function and 

obtain the output probability (Eq. 9)

where p is the probability that the pixel belongs to a 

class (output probability), n is the number of input con-

texts, ci is the context value of the ith context, vi is the 

value from the memory M for context i, k is some ad 

hoc constant, T is an adaptive probability map transfer 

function which takes as input a probability and a small 

context value C and outputs a reined probability, and σ 

is the sigmoid function.

The adaptive probability map (APM), sometimes called 

secondary symbol estimation (SSE), is used to ine tune a 

probability and works in the following way:

• Select a set of interpolation points according to a context 

value C: points = pointset[C]

• Find the two points indexes between which the input 

value falls: index low and index high

• Output the probability as the weighted average of the two 

values from the points. The weight is selected from how 

far the input is from the two points:

The input probability p can be mapped to point indexes in 

more ways. A simple way is to quantize the probability linearly 

to the number of points Np. This is equivalent to

(9)

p = T

(

�

(

k

n

n
∑

i=0

vi

)

, C

)

with vi = M[i]
[

hash(ci)
]

(10)

Output = points[index low] ∗ (1− weight)

+ points
[

index high
]

∗ weight

where [ ] denotes the loor operation.

Another way to quantize the probability is to stretch the 

probability irst and then quantize linearly to the number of 

points. This serves the purpose to allocate more points close to 

zero and one, where ine-tuning makes more sense. The input 

value for the APM is now a stretched probability.

The following two diagrams plot the initial point values for 

the two methods described with respect to the input. When no 

value was changed, the output of the APM should be equal to 

the input probability. The X-axis represents the input value to 

be quantized, and the Y-axis represents the point values (prob-

ability) (Fig. 2).

In logistic regression, every feature is individually weighted 

before applying the sigmoid function to the result. There is no 

assumption about the origin of the numeric value of the fea-

ture. When we know that the input features are probabilities, 

logistic regression can be seen as a way of combining them. 

Mattern [17] proved that if instead of using plain probabilities 

as input, we use stretched probabilities (inverse logistic func-

tion), that logistic mixing is optimal in the sense of minimizing 

Kullback–Leibler divergence, or wasted coding space, of the 

input predictions from the output mix. Stretching the input 

probabilities makes logistic regression a form of geometric 

weighting instead of linear weighting:

where xj,i is a probability becomes

where tj,i = ln

(

xj,i

1−xj,i

)

 and the update formula for minimizing 

the relative entropy could be written:

Coming back to our case, we ask the question: where 

does the predictive power of an ensemble come from? 

Where does this information lay, in the aggregating 

(11)
Index low =

[

p ∗ Np

]

, Index high =

[

p ∗ Np

]

+ 1

(12)�0 + �1x1,i + �2x2,i +⋯ + �
k
x

k,i

(13)�0 + �1t1,i + �2t2,i +⋯ + �ktk,i

(14)�j = �j + � tj(yi − pi)

Fig. 2  a Uniform distribution of points; b non-uniform distribution of points
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algorithm or the individual components? It is obvious that 

if we use a form of logistic regression, the set of weights 

carries some information. It can be argued if that more 

weights are somehow added to the aggregating algorithm, 

it would be beneficial to its predictive power.

To some extent following this, an algorithm that adds 

more layers of logistic regression is the context mixing 

algorithm. The algorithm has been successfully applied in 

state-of-the-art data compression programs like PAQ [18] 

and cmix [19], which rank first in most text and general 

data compression benchmarks for their compression ratio.

The algorithm works in the following way:

• Instead of mixing the input probabilities with only one 

set of weights, create a number N of buckets of sets of 

weights

• Choose one set of weights from each of the N buckets 

according to a function of context

• Applying logistic regression with each set of weights 

will result in N probabilities, which will be mixed by 

another set of weights chosen from its own bucket.

One could underline that some information regarding 

context is passed to the mixing ensemble, hence the name 

context mixing. If instead we want to move the mixing 

information from the ensemble toward the weak learners, 

we need to take into consideration the following: How 

to pass information back to the learners? We made little 

assumptions so far about the value of vi. We know that 

the value comes from a big bucket of entries, where its 

index is dependent on the context. In a regression sense, 

the feature is the context, not vi. We interpret this value 

like vi= βi+ ti, where ti is a stretched probability for the 

context value and β is the weight of the probability in the 

ensemble. Averaging the memory values:

which itself is a stretched probability. Applying the sigmoid 

function converts this average back into a probability.

4.2  The proposed model update

To update the model, we propose dual objective 

minimization:

• Minimize the error with respect to the output of the entire 

network

• Minimize the error with respect to the output of the indi-

vidual node

(15)
k

n

n
∑

i=0

�
i
t
i

An important remark here is that we can update the model 

from a supervised learning point of view or from a rein-

forcement learning point of view. Supervised learning means 

that we know the precise probability for the case we were 

predicting, and we use that for backpropagation. Reinforce-

ment learning means we do not know the exact probability 

for the case and do not even know how to obtain it, but 

instead we rely on maximizing a cumulative reward in an 

on-line manner, given the interaction with the environment. 

In our case, instead of backpropagating a probability, we can 

use the binary outcome instead and try to minimize either 

the cumulative logistic loss or the cumulative square loss 

(Fig. 3).

Working with stretched probabilities for logistic regres-

sion results in the global update error to be:

for minimizing logistic loss, or

for minimizing the square loss, where Eg is the global error, 

βg is the global error learning rate, p is the output probability 

and y is the information available as ground truth, that can 

be a binary outcome or a probability.

After computing the global error, we proceed in comput-

ing local errors for each memory value and updating them. 

The local error is deined as:

for minimizing logistic loss, or

(16)Eg = �g(p − y)

(17)Eg = �g(p − y)p(1 − p)

(18)El = �l(pi − y) with pi = �(vi)

(19)El = �l(pi − y)pi(1 − pi) with pi = �(vi)

Fig. 3  Block scheme for the proposed update algorithm
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for minimizing the square loss, where El is the local error, βl 

is the local error learning rate, pi is the output probability for 

the ith context (side prediction), computed as the sigmoid of 

the memory value vi, and y is the ground truth.

Each memory value is then updated by subtracting both 

the local and the global errors:

It is important to notice that the global error is computed 

using the output probability which was reined by the adap-

tive probability map. This is not mandatory, but our tests 

show better results when the reined probability is used. This 

can be seen as allowing the model to learn something that 

can be corrected.

Updating the adaptive probability map works in the fol-

lowing way: the point values for index high and index low 

are adjusted to reduce the prediction error. Error for index 

low is

the error for index high is

where y is the ground truth available. Of course, variations 

of this can be applied, such as updating only the closest 

value.

Compared with the logistic regression, this method does 

not update the weights of the mixture, since the combining 

function is not a dot product, but it updates directly the val-

ues which participate in the average.

It is still a form of ensemble learning, particularly ensem-

ble averaging, where the elements of the ensemble here are 

the memory values. The ensemble error is the global error.

One can argue that this method is similar to boosting, 

regarding the fact that each side prediction is a weak learner, 

and the output after mixing is the strong learner. Depend-

ing on the memory implementation chosen, which will be 

discussed in the next chapter, additional and possible longer 

contexts with unseen data make up for the bias of shorter 

contexts and can be added or evicted when accounting for 

the memory size limitations. Even though the error is back-

propagated depending on the context, it also difers from 

context mixing, because there is no mixing layer to separate 

the context weights from the input probabilities.

5  Results

5.1  Inputs, preprocessing and processing 
architecture

We implemented the contextual memory algorithm for 

an edge detector application. This section describes the 

(20)v
i
= v

i
− El − Eg

(21)(Points[index low] − y) ∗ (1−weight) ∗ learning rate

(22)
(

Points
[

index high
]

− y
)

∗ weight ∗ learning rate

architecture and some of the implementation details of 

the application. The application is implemented in the C# 

programming language, since we wanted to not restrict the 

testing and usage of the application to a closed scripting 

environment like MATLAB. Using a strongly typed pro-

gramming language also helps with choosing better data 

structures. The source code is publicly available at the 

GitHub page https ://githu b.com/AlexD oroba ntiu/Conte 

xtual Memor yEdge Detec tion.

Even when talking about two-dimensional images, 

color images have more layers in the dimension of the 

RGB colors. Hence, three layers can go as an input for the 

algorithm. These layers are preprocessed using a chain of 

preprocessors. We used a Gauss ilter for eliminating the 

noise in the input images. This takes the original RGB 

layers as input and outputs a three-layer image. We used a 

ilter of size 5 and a sigma value of 1.4.

Since the algorithm makes no assumption of the data 

behind contexts, it can be beneic to include transfor-

mations of the color layers. Such transformations are 

appended as other layers for the algorithm input image. We 

optionally used the Sobel ilter, the Canny edge detection 

algorithm and a Kirsch edge detection algorithm as input, 

which take the color channels and output another layer. 

This makes the inal input image to have three or more lay-

ers. Having a Canny layer, or any edge detector as input, is 

a sort of domain-speciic knowledge added in the model.

The single-layer architecture takes a preprocessed 

image as an input and uses a given set of color channels to 

compute an output image which consists of a single-layer 

grayscale image in which the pixels represent the prob-

ability that the position in the original image belongs to 

an edge. The single-layer architecture combined with the 

simple rays as contexts does not take into account infor-

mation about the edge being kept the same at diferent 

zoom levels.

To tackle the zooming problem, the multilayer archi-

tecture behaves in this way: take the original image, apply 

preprocessing, obtain the output; then take the original 

image, apply the preprocessing, append the previously 

obtained output as a layer, resize the image (meaning all 

its layers), and use it as an input for the algorithm. If one 

decides to separate the memory used by the algorithm at 

diferent sizes, we have a multilayer architecture. Each 

layer is trained separately starting from the largest image 

and going toward resized images. An algorithm layer can 

have diferent conigurations from the other layers, and 

options can include the length of the longest ray, the pre-

processing done, the memory size and others. The result 

of the multilayer architecture is a set of grayscale images 

of varying sizes, which are called side outputs. These 

side outputs are then combined (blended) using a logistic 

regression layer, to form a single image. Before blending, 
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the images are scaled to have the same size. The weights 

of the logistic regression layer are also trained on the train-

ing set.

5.2  Results on Berkeley edge detection benchmark

In this chapter, we present one example of the output images 

from the algorithm using image “326025.jpg” from the men-

tioned benchmark dataset along with some of the parameters 

used and a short description of the diferences. We also pro-

vide an analytical evaluation of the improvements compared 

to the Canny edge detection method (Fig. 4).

The global parameter values used in the tests were 

βl = 0.25, βg = 0.5 and k = 2, and quantized derivative rays 

have the two least signiicant bits quantized. The results for 

single-layer architecture are shown in Table 1, (Table 2 and 

Fig. 5).

Before computing the score for the benchmark, the output 

images are subjected to a non-maximal suppression tech-

nique and subsequently to an edge thinning. This is done in 

MATLAB, using an adapted version of the Piotr Dollar’s 

Structured Edge Detection Toolbox, available at https ://githu 

b.com/pdoll ar/edges .

The benchmark provides a tool for evaluation which 

has an automated search in the space of thresholding, so 

that the user feels free to leave grayscale images instead 

of making the binarization himself. We compare the algo-

rithm with the well-known Canny edge detector, the recent 

ID&L algorithm [10] and to the state-of-the-art deep learn-

ing algorithms HED [6], RDS [7], RCF-ResNet101-MS 

[8], CED-VGG16 [20], AMH-ResNet50 [21], CASENet 

[22] and CEDN [23] (Table 3).

We can clearly see from Fig.  6 that the learning is 

shifted toward not taking any risks, since the better F1 

score is achieved in the low threshold settings. In order to 

obtain an overall better F1 score, class balancing must be 

considered when applying the loss function.

We made another analytical comparison using the cross-

entropy measure. If we have two probability distributions, 

we can measure the number of bits needed to identify an 

event drawn from a set if a coding scheme is used using a 

probability distribution other than the true distribution of 

the set. Since the pixel intensities in the resulting images 

can be modeled as a probability of a pixel belonging to 

an edge, we can measure the cross-entropy for the output 

images. We show a comparison with the Canny algorithm 

for the irst 50 images in the test set of the benchmark in 

Fig. 7. A better probability modeling of the true source 

of the edges should have a lower cross-entropy. For the 

overall set, the proposed method obtained a cross-entropy 

of 6610784. In comparison, the Canny algorithm obtained 

a score of 11372700. This means that our algorithm sur-

passed the Canny algorithm by a factor of 1.72.

To prove the potential of the proposed method, we also 

considered the precision with respect to the threshold. 

Precision is the fraction of relevant instances among the 

retrieved instances. A high value represents a small rate 

of false positives. Compared with the Canny algorithm, 

the proposed method ofers a steady increase in precision 

and a roughly constant better precision with respect to the 

threshold. This can be seen in Fig. 8.

Provided the results on the three measures, we show 

that the proposed algorithm has potential over the Canny 

method.

6  Conclusions

The main contribution of this paper is an application 

agnostic algorithm for prediction of probabilities based 

on the contextual information available, where learning 

can be done in an on-line fashion. More than this, it does 

not impose any constraints on how to choose or model the 

context. This freedom allows it to be used in many areas 

Fig. 4  a Sample image from the benchmark along with b the ground truth
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such as one-dimensional data, such as text information 

or data sequences, two-dimensional data, such as images, 

and three-dimensional data, such as volumetric images (or 

image slices which represent volumetric information). It 

also allows it to be part of larger learning and prediction 

structures, having loose requirements on what information 

is needed for feedback.

Table 1  Some of the results for single layer

Algorithm output Description

Context model: 16 rays, max length: 8, including quantized derivative rays

Memory: direct lookup, table size 218

Loss function: square loss

Number of passes over training set: 1

Preprocess: Gauss

Context model: 16 rays, max length: 8, including quantized derivative rays

Memory: tagged lookup, table size 220

Loss function: square loss

Number of passes over training set: 1

Preprocess: Gauss

Context model: 16 rays, max length: 8, including quantized derivative rays

Memory: bucket lookup, table size 220

Loss function: square loss

Number of passes over training set: 1

Preprocess: Gauss, Canny, Kirsch

Context model: 16 rays, max length: 8, including quantized derivative rays

Memory: direct lookup, table size 220

Loss function: entropy loss, GT threshold: 63

Number of passes over training set: 1

Preprocess: Gauss, Canny, Kirsch
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In order to demonstrate the usefulness of the method, 

a 2D edge detection application using the method was 

implemented. The results are promising, considering that 

no prior handcrafted knowledge has been added in the 

model to help with the prediction.

Allocating too much memory and more training passes 

over the training set leads to overitting. The algorithm 

will learn by heart the training set and will reproduce 

meticulously the ground truth, but the quality of the results 

Table 2  Some of the results for multilayer architecture

Algorithm output Description

Context model: 16 rays, max length: 8, including quantized derivative rays

Memory: direct lookup, table size 218

Loss function: square loss, GT threshold: 63

Number of passes over training set: 1

Preprocess: Gauss, Canny, Kirsch

Layers scale: 1, 2, 4, 8, 16

Context model: 16 rays, max length: 8, including quantized derivative rays

Memory: bucket lookup, table size 219

Loss function: entropy loss, GT threshold: 63

Number of passes over training set: 1

Preprocess: Gauss

Layers scale: 1, 3, 5, 7

Context model: 16 rays, max length: 8, including quantized derivative rays

Memory: bucket lookup, table size 219

Loss function: entropy loss, GT threshold: 63

Number of passes over training set: 1

Preprocess: Gauss, Canny

Layers scale: 1, 3, 5, 7

Context model: 16 rays, max length: 8

Memory: bucket lookup, table size 219

Loss function: entropy loss, GT threshold: 63

Number of passes over training set: 1

Preprocess: Gauss, Canny, Kirsch

Layers scale: 1, 3, 5, 7
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on the test set will downgrade. We do not propose any 

solution to the overitting problem in this paper.

In the future, we intend to develop more in the direction 

of contextual modeling, which means exploring the space 

of choosing the appropriate contexts for various applica-

tions. We would also like to extend the existing applica-

tion for three-dimensional images and apply it for medi-

cal image segmentation. Some of the changes needed to 

make when switching from 2D to 3D will be to model 3D 

contexts, which can be chosen as rays in three dimensions 

instead of two. Also, centerline and segmentation bench-

marks have diferent intended objectives, so the feedback 

mechanism and the output metrics will have to be adapted 

to obtain results relevant to those benchmarks.

In order to improve the existing application, the follow-

ing can be implemented:

• Replace the loss function with a cost-sensitive loss 

function, as described in [13], because the distribution 

of edge/non-edge pixels in the benchmark is biased 

90% in favor of non-edges

• Model rays as individual blocks, whose output will be 

combined using a context mixing layer. This means each 

ray will output a probability, and the set of probabilities 

will be further combined into a single probability

• Replace the blending algorithm with an improved context 

mixing layer, maybe even with a fully connected layer 

such as in CNNs

• Add more convolutional layers as input, having a set of 

learnable ilters

• Add the output of the state-of-the-art edge detectors as 

input layers, to see how the algorithm balances the preci-

sion and recall

• Implement a GPGPU version of both the single and mul-

tilayer algorithm

• Adapt the training phase to iterate over transformed ver-

sions of the input images, such as rotations and scaling, 

to gain more training data

• Exclude unconvincing ground truth data, when less than 

a half of the human subjects agree to the edge position

• Last but not least, design space exploration with respect 

to the parameters

Integrating with the relaxed deep supervision [7] algo-

rithm should provide interesting results, since algorithm 

provides high precision on lower thresholds. We also expect 

the proposed network to integrate well with a deep learning 

architecture, especially with a CNN network, as a layer after 

the rectiied linear units (ReLU) layer, side by side with the 

fully connected layer.

Fig. 5  Output example after NMS and thinning

Table 3  Comparative results

Algorithm F1 score Precision Recall Threshold

Canny 0.583 0.500 0.698 0.33

ID&L [10] 0.610 0.590 0.680 N/A

Contextual memory (pro-

posed)

0.640 0.605 0.686 0.19

CASENet [22] 0.767 N/A N/A N/A

HED [6] 0.787 0.803 0.772 0.46

RDS [7] 0.792 N/A N/A N/A

CED-VGG16 [20] 0.794 N/A N/A N/A

AMH-ResNet50 [21] 0.798 N/A N/A N/A

CEDN [23] 0.788 N/A N/A N/A

RCF-ResNet101-MS [8] 0.819 N/A N/A N/A
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Fig. 6  F1 score plotted against 

threshold

Fig. 7  Cross-entropy for the irst 50 images of the dataset (lower is better)
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