
Dear Author,

Here are the proofs of your article.

• You can submit your corrections online, via e-mail or by fax.

• For online submission please insert your corrections in the online correction form. Always
indicate the line number to which the correction refers.

• You can also insert your corrections in the proof PDF and email the annotated PDF.

• For fax submission, please ensure that your corrections are clearly legible. Use a fine black
pen and write the correction in the margin, not too close to the edge of the page.

• Remember to note the journal title, article number, and your name when sending your
response via e-mail or fax.

• Check the metadata sheet to make sure that the header information, especially author names
and the corresponding affiliations are correctly shown.

• Check the questions that may have arisen during copy editing and insert your answers/
corrections.

• Check that the text is complete and that all figures, tables and their legends are included. Also
check the accuracy of special characters, equations, and electronic supplementary material if
applicable. If necessary refer to the Edited manuscript.

• The publication of inaccurate data such as dosages and units can have serious consequences.
Please take particular care that all such details are correct.

• Please do not make changes that involve only matters of style. We have generally introduced
forms that follow the journal’s style.
Substantial changes in content, e.g., new results, corrected values, title and authorship are not
allowed without the approval of the responsible editor. In such a case, please contact the
Editorial Office and return his/her consent together with the proof.

• If we do not receive your corrections within 48 hours, we will send you a reminder.

• Your article will be published Online First approximately one week after receipt of your
corrected proofs. This is the official first publication citable with the DOI. Further changes
are, therefore, not possible.

• The printed version will follow in a forthcoming issue.

Please note
After online publication, subscribers (personal/institutional) to this journal will have access to the
complete article via the DOI using the URL: http://dx.doi.org/[DOI].
If you would like to know when your article has been published online, take advantage of our free
alert service. For registration and further information go to: http://www.link.springer.com.
Due to the electronic nature of the procedure, the manuscript and the original figures will only be
returned to you on special request. When you return your corrections, please inform us if you would
like to have these documents returned.

http://www.link.springer.com

Metadata of the article that will be visualized in
OnlineFirst

ArticleTitle A novel contextual memory algorithm for edge detection
Article Sub-Title

Article CopyRight Springer-Verlag London Ltd., part of Springer Nature
(This will be the copyright line in the final PDF)

Journal Name Pattern Analysis and Applications

Corresponding Author Family Name Dorobanţiu
Particle

Given Name Alexandru
Suffix

Division Computer Science Department

Organization Lucian Blaga University of Sibiu

Address 550024, Sibiu, Romania

Phone +40745572995

Fax

Email alexandru.dorobantiu@ulbsibiu.ro

URL

ORCID http://orcid.org/0000-0003-4982-6930

Author Family Name Brad
Particle

Given Name Remus
Suffix

Division Computer Science Department

Organization Lucian Blaga University of Sibiu

Address 550024, Sibiu, Romania

Phone

Fax

Email

URL

ORCID http://orcid.org/0000-0001-8100-1379

Schedule

Received 30 March 2018

Revised

Accepted 22 March 2019

Abstract Edge detection plays an important role in many computer vision systems. In this paper, we propose a novel
application agnostic algorithm for prediction of probabilities based on the contextual information available
and then apply the algorithm for estimating the probability of pixels belonging to an edge using
surrounding pixel values as local contexts. We then proceed to test different image transformations as input
layers, such as the Canny edge detector. We propose two different architectures, one single layered and one
multilayered, which approach the scaling problem by creating scaled side outputs and combining them via
a logistic regression layer. We tested our approach on the BSDS500 edge detection dataset with optimistic
results.

Keywords (separated by '-') Edge detection - Local context - Neural network - Probabilistic method - BSDS500 benchmark

Footnote Information

U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : Large 10044 Article No : 808 Pages : 13 MS Code : PAAA-D-18-00135 Dispatch : 29-3-2019

Vol.:(0123456789)1 3

Pattern Analysis and Applications

https://doi.org/10.1007/s10044-019-00808-0

SHORT PAPER

A novel contextual memory algorithm for edge detection

Alexandru Dorobanţiu1 · Remus Brad1

Received: 30 March 2018 / Accepted: 22 March 2019

© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract

Edge detection plays an important role in many computer vision systems. In this paper, we propose a novel application agnos-

tic algorithm for prediction of probabilities based on the contextual information available and then apply the algorithm for

estimating the probability of pixels belonging to an edge using surrounding pixel values as local contexts. We then proceed to

test diferent image transformations as input layers, such as the Canny edge detector. We propose two diferent architectures,

one single layered and one multilayered, which approach the scaling problem by creating scaled side outputs and combining

them via a logistic regression layer. We tested our approach on the BSDS500 edge detection dataset with optimistic results.

Keywords Edge detection · Local context · Neural network · Probabilistic method · BSDS500 benchmark

1 Introduction

The process of segmentation selects a set of pixels from

an image, based on rules and patterns. The labeling of the

extracted sets allows the user to obtain more information

from the image. Typical rules for segmentation include the

grouping of pixels by color, intensity or texture. Neverthe-

less, by targeting information extraction, rules can head

toward inding edges of objects, areas, speciic shapes and

volumes, when applied to stacks of images. Automatic anno-

tation of images and video gains more support each year.

Practical applications of image segmentation include

machine vision, control systems, object detection (for exam-

ple, face detection and pedestrian detection), recognition

tasks (for example, ingerprint and iris recognition) and last

but not least, medical imaging. Medical image segmenta-

tion borrows from many general-purpose segmentation tech-

niques but combines them with domain-speciic knowledge

in order to obtain better results. Shape analysis and volume

evolution make medical image segmentation important for

diagnostics and treatment plans.

Recent methods, like deep learning through convolu-

tional neural networks (CNN), proved to give state-of-the-art

results in 2D benchmarks, but neural network architectures

for 3D image processing are only now starting to emerge.

Medical image segmentation integrated these techniques for

both 2D [1] and 3D [2] segmentations.

In this paper, we introduce a general algorithm for auto-

mated learning, which stands as a basis for various appli-

cations. We provide a description of the algorithm and

point out diferences from various implementations tested.

To prove the efectiveness, we have applied and tested the

algorithm on an edge detection benchmark, with promising

results. As for now, the algorithm was applied only for 2D

images, but in the future, we plan to extend it for volumetric

images, as an application in medical imaging.

2 Related work

Edge detection has been a subject of research for many years,

with papers as early as 1975 [3]. Since then, a large num-

ber of techniques have been approached, targeting diferent

aspects of edge detection, like closed contours, human-like

perception or fast detection. In the following, we provide

an overview of more recent methods used, organized by the

main strategy of the algorithm.

In [4], a method based on oriented gradient signals is

described. These are obtained from splitting the input image

into the three CIELAB color channels and a texture channel.

After applying iltering on the channels with 17 Gaussian

kernels, the results are clustered using a K-means algorithm.

An image is formed using the result for each pixel on which

 * Alexandru Dorobanţiu

 alexandru.dorobantiu@ulbsibiu.ro

1 Computer Science Department, Lucian Blaga University

of Sibiu, 550024 Sibiu, Romania

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

A1

A2

A3

A4

A
u

th
o

r
 P

r
o

o
f

http://orcid.org/0000-0003-4982-6930
http://orcid.org/0000-0001-8100-1379
http://crossmark.crossref.org/dialog/?doi=10.1007/s10044-019-00808-0&domain=pdf

U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : Large 10044 Article No : 808 Pages : 13 MS Code : PAAA-D-18-00135 Dispatch : 29-3-2019

 Pattern Analysis and Applications

1 3

a non-maximal suppression is applied. So far, only local

information was used for each pixel. For the global informa-

tion, spectral clustering is used. The probability of a pixel

belonging to the contour is a weighted combination of the

local and global information.

Real-time frame rates have been recently achieved using

random decision for edge detection [5]. Local image patches

were used as a basis for learning structure labels. These are

then mapped into a discrete space using a decision tree

which splits the data based on a decision function. Learning

was done by independently training the trees in a recursive

manner using information gain criteria.

Deep learning architectures started to prove state-of-

the-art results at impressive processing speed of 0.4 s using

the holistically nested edge detection (HED) architecture

[6]. The networks map whole image to image predictions

which provide a signiicant advantage as a global informa-

tion method. A convolutional neural network with hierarchi-

cal representations provides the high-level features, visible

as side outputs of the network. Deep supervision is used

for training the layers, which are blended using a weighted

fusion layer to provide the inal image.

Relaxed deep supervision (RDS), proposed in [7], also

relies on deep learning, but the main diference from HED

is that RDS accepts as input predictions from other edge

detectors such as Canny, called relaxed labels. HED itself

is used as a provider for relaxed labels. The network tries to

eliminate most of the false positives from all the intermedi-

ate layers.

The current state of the art is another recent deep learning

approach based on richer convolutional features [8]. Similar

to HED, it has a phase of producing side outputs, but in

this case, a VGG16 architecture was used. Instead of using

only the inal convolutional layers for merging like previous

approaches did, this architecture encapsulates in a holistic

manner features from all convolutional layers and then trains

the network via backpropagation.

Though the research on deep network focuses only on

developing network architectures and not new techniques,

other approaches are continually tested in the literature with

promising improvements for low-level features, with the

main advantage being that you do not need a powerful video

card to run these algorithms thus can run on most equipment

and the results are good enough for further processing. One

such algorithm which improves the Canny edge detector is

described in [9]. After applying an improved anisotropic

difusion ilter, gradient templates are used for four direc-

tions. Then, an adaptive threshold is computed based on the

histogram of the image, making the output more resilient

to noise.

Another algorithm of this type revolves around hierar-

chical graph partitioning [10]. The algorithm employed

is called Divide and Link, and it is used for a hierarchical

network clustering. Unlike our proposed method, pixels are

here modeled as nodes in a graph and a dissimilarity order

between pixels determines the clusters in the graph. The

regions are then transformed into a boundary map with a

selection of the largest area of neighbor regions to provide

the border.

3 Basis for the contextual memory

Before detailing the proposed algorithm, we will present

some methods and techniques which stand as a basis for the

concept of contextual memory.

3.1 Logistic regression

For a regression model, where the dependent variable is a

categorical, the logistic regression can be used. In our case,

the outcome is binary, where an image pixel belongs to a

certain group or not. Binary logistic regression is useful for

estimating the probability of class membership. Useful for

making such predictions, a single-layer neural network has

the output probability:

where pi is the probability that the output Yi belongs to the

class, deined as a sigmoid function of a linear combination

of the k explanatory variables X, and βj for j = 1,…,k are

the parameters to be estimated, usually called coeicients

or weights. The sigmoid function takes any input x∈ℜ and

outputs a value between zero and one, making it interpret-

able as a probability. This function is also preferred because

it has a continuous derivative.

The inverse of the logistic function, sometimes called the

stretch function, is deined as:

There are numerous numerical ways to estimate the

coeicients [11]; relevant here is the stochastic gradient

descent. Minimizing a function by following the gradient of

the cost is called gradient descent. If the loss is accounted

for the entire training set or a subset of the training set, the

method is called batch gradient descent. If the batch is the

size of one, we will have a stochastic gradient descent. For

each instance i of the training set, we will make a predic-

tion and then sufer a loss. If we apply the backpropagation

(1)Pr(Yi = 1|Xi) = pi =
1

1 + e−(�0+�1x(1,i)+�2x(2,i)+⋯+�kx(k,i))

(2)y =
1

1 + e−f (x)
,

dy

dx
=

y(1 − y)df

dx

(3)g(t) = ln

(

t

1 − t

)

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

A
u

th
o

r
 P

r
o

o
f

U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : Large 10044 Article No : 808 Pages : 13 MS Code : PAAA-D-18-00135 Dispatch : 29-3-2019

Pattern Analysis and Applications

1 3

algorithm, the weights will be updated according to the fol-

lowing rule:

where βj is the weight for the jth input variable xj, pi is the

output probability for the instance i, and yi is the label of

the instance (0 or 1). The learning rate α, usually chosen

empirically, limits the amount of correction for each coef-

icient. This is the gradient descent in weight space which

minimizes the root-mean-square error.

Instead, if we want to minimize the relative entropy

− log(1 − pi) if yi= 1 or − log(pi) if yi= 0, then we will apply

Eq. (5).

This minimizes the amount of information lost when a

prior probability distribution Q is used to approximate a

posterior probability distribution P.

3.2 Ensemble learning

Combining multiple hypotheses in order to obtain a bet-

ter hypothesis is called ensemble learning. Ensembles are

supervised learning meta-algorithms which, after training,

can be used to make predictions. The ensemble also repre-

sents a hypothesis. The set of hypotheses which compose the

ensemble do not necessarily contain the output hypothesis,

making it likely to better describe the data. If not carefully

prevented, this can lead to overitting the training data.

As expected, using ensemble methods requires more

resources (memory and computation time) than single mod-

els. Various techniques make a trade-of between the speed

of computation, amount of memory used and the accuracy

of the model.

In the process of designing artiicial neural networks, cre-

ating multiple models and combining them are called ensem-

ble averaging. The ensemble should perform better than the

individual models because the error averages out. Instead of

picking the prediction of only one of all the models as many

ensemble techniques do, all the models are kept and the ones

which are more prone to error are assigned a smaller weight.

This can be expressed as a linear combination of experts.

The output of the ensemble can be computed like in Eq. (6)

with α a set of weights, yj as the jth model prediction.

Numerically, optimizing α is already a solved problem when

applying the neural network learning rules.

The properties of the models upon which the ensemble

averaging is built upon are [12]:

(4)�j = �j + � xj (yi − pi) pi (1 − pi)

(5)�j = �j + � xj (yi − pi)

(6)y(X;�) =

k
∑

j=1

�jyj(x)

1. In any network, the bias can be reduced at the cost of

increased variance

2. In a group of networks, the variance can be reduced at

no cost to bias

False assumptions in the learning algorithm lead to bias

error. High bias leads to missing the correlations between

the data features and the target outputs (under itting). Sen-

sitivity to small luctuations in the training set causes vari-

ance error. High variance can cause overitting, meaning

that the model has learned mostly noise instead of general-

izing for unseen data. Given trained models with low bias

but high variance, the result of the ensemble averaging is

expected to have both low bias and low variance.

One of the variants of ensemble averaging is the nega-

tive correlation learning. This algorithm attempts to train

and to combine individual networks in an ensemble in the

same learning process [13].

Boosting is meta-algorithm which aims to create a

strong learner from a collection of weak learners. As a

rule of thumb, a series of weak classiiers are trained with

respect to a probability distribution and are added to the

set which is the basis for the strong classiier. This sequen-

tial introduction of weak learners keeps them focused on

the samples previous learners misclassiied.

AdaBoost, short for “adaptive boosting”, is a type of

ensemble learning. A boost classiier has the following

form:

ft (x) is a weighted weak learner, while x is the sampled

input. For a binary classiication task, the output of the

learner is considered of class 0, if the value is negative, or

class 1, if the value is positive. The absolute value of the

output should be interpreted as conidence in the result.

The output of a weak learner for the sample i is called

the hypothesis h(xi). At iteration t, a weak learner is cho-

sen and weighted with a coeicient αt. The value of αt

should minimize Et which is the training error at stage t.

The error is computed using Eq. (8)

where Ft−1(x) is the boosted classiier built up to the pre-

vious stage and E(F) is an arbitrarily chosen error func-

tion. Recently, convex potential boosters received criticism

regarding convergence where random classiication noise is

present [14].

Stacking refers to blending the predictions of multi-

ple machine learning models. With a speciically given

(7)FT (x) =

T
∑

t=1

ft(x) with ft(x) = �th(x)

(8)E
t
=
∑

i

E
(

F
t−1(xi

) + �
t
h(x

i
)
)

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

A
u

th
o

r
 P

r
o

o
f

U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : Large 10044 Article No : 808 Pages : 13 MS Code : PAAA-D-18-00135 Dispatch : 29-3-2019

 Pattern Analysis and Applications

1 3

combiner algorithm, stacking can represent most if not all

ensemble techniques. Usually, a logistic regression layer

is used as the combiner.

3.3 Context modeling

Context modeling describes how the context information

is structured and maintained. Depending on the problem,

diferent types of discriminator contexts are useful. Local

context refers to the aspect of the data examined, as opposed

to context value, which represents the numeric value of that

context. The context value will be used for accessing the

memory structure. The memory takes a context value as

input and outputs a value used for computing the output

probability of belonging to a certain class.

When discussing edge detection and describing whether

a pixel belongs to an edge or not, one of the most important

aspects to take into consideration is the neighboring pixels.

For instance, as a context, we can take the top pixel and left

pixel. The context value for this example would be top pixel

intensity 255, left pixel intensity 20.

Choosing neighboring pixels means using a local context,

because we do not input the entire image when deciding if

the focused pixel is an edge or not. Even more, there is no

clear rule on how far away we should look when making

such an assumption.

We can deine contexts as rays, starting from the focused

pixel and going in a straight line away in a given direction.

Rays are deined by direction and length. Rays could be cho-

sen from 1 to L, the maximum context length. We deine

direction by the angle of the ray, and we choose the angle by

dividing 360 degrees by the number of rays we want to use.

For example, if we use 8 rays, we have 4 rays, one for each

axis, and 4 rays for the diagonals, as in Fig. 1, for length 5

and 8 rays.

The context value need not be only pixel values; we

can take any function of the pixel values as well. Instead

of directly using the values of the pixels, we can take the

numerical derivative of the pixels in the direction of the

ray. Of course, one can mask or quantize the values of the

pixels or the value of the derivative. In the case of color

images, rays for each color channel can be individually taken

as contexts.

3.4 Resources and hashing as a solution

If we allow contexts of any length to be used, we quickly hit

the wall of practical limitations. Take, for instance, context

values as pixels from a color channel which are represented

as bytes. A context of length only 4 already means 232 pos-

sible values. But not all the values will be relevant, as most

of the possible values will represent noise.

To overcome this issue, we use hashing functions to

map them to the chosen data structures. A hashing function

maps data of arbitrary size to data of ixed size. This makes

them useful for data structures like hash tables. One at a

time hash functions are useful for data which comes in byte

chunks, especially when we want to keep the intermediary

hash values.

For the current work, we analyzed in particular two dif-

ferent types of hash functions: Jenkins hash function [15]

and Fowler–Noll–Vo hash function [16]. Both of them are

non-cryptographic but were chosen for their speed of com-

putation and rather low collision rate.

Both functions can be altered to keep the intermediate

results of the hash value, useful when working with rays of

increasing length.

4 An original method for contextual
prediction

Applied on images, the context modeling part of the algo-

rithm takes as input an image and a position. The position

is used as a basis for the rays which are modeled as posi-

tion deltas from the focused pixel. The values of the pixels

are taken from the color channel of the image and are then

hashed. The result of the hash is the context value, which we

later use for indexing. As a result, we have as many context

values (numbers) as the number of contexts.

The memory can be organized as a map with a separate

table for each context in order to prevent collisions between

contexts. There are more ways to organize the memory, and

some suggestions will be discussed in the implementation

details.

4.1 Model prediction

In order to make a prediction, we have proposed the follow-

ing algorithm:

a b

Fig. 1 a Position of pixels as rays of length 5; b ray length 3 (green),

length 4 (blue) and length 5 (orange)

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

A
u

th
o

r
 P

r
o

o
f

U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : Large 10044 Article No : 808 Pages : 13 MS Code : PAAA-D-18-00135 Dispatch : 29-3-2019

Pattern Analysis and Applications

1 3

1. We obtain a value from the memory for each context.

One way to do that is to index the hash of the context

value in a table

2. We average all the obtained memory values

3. Convert the average into a probability using the sigmoid

function

4. Reine the probability using a transfer function and

obtain the output probability (Eq. 9)

where p is the probability that the pixel belongs to a

class (output probability), n is the number of input con-

texts, ci is the context value of the ith context, vi is the

value from the memory M for context i, k is some ad

hoc constant, T is an adaptive probability map transfer

function which takes as input a probability and a small

context value C and outputs a reined probability, and σ

is the sigmoid function.

The adaptive probability map (APM), sometimes called

secondary symbol estimation (SSE), is used to ine tune a

probability and works in the following way:

• Select a set of interpolation points according to a context

value C: points = pointset[C]

• Find the two points indexes between which the input

value falls: index low and index high

• Output the probability as the weighted average of the two

values from the points. The weight is selected from how

far the input is from the two points:

The input probability p can be mapped to point indexes in

more ways. A simple way is to quantize the probability linearly

to the number of points Np. This is equivalent to

(9)

p = T

(

�

(

k

n

n
∑

i=0

vi

)

, C

)

with vi = M[i]
[

hash(ci)
]

(10)

Output = points[index low] ∗ (1− weight)

+ points
[

index high
]

∗ weight

where [] denotes the loor operation.

Another way to quantize the probability is to stretch the

probability irst and then quantize linearly to the number of

points. This serves the purpose to allocate more points close to

zero and one, where ine-tuning makes more sense. The input

value for the APM is now a stretched probability.

The following two diagrams plot the initial point values for

the two methods described with respect to the input. When no

value was changed, the output of the APM should be equal to

the input probability. The X-axis represents the input value to

be quantized, and the Y-axis represents the point values (prob-

ability) (Fig. 2).

In logistic regression, every feature is individually weighted

before applying the sigmoid function to the result. There is no

assumption about the origin of the numeric value of the fea-

ture. When we know that the input features are probabilities,

logistic regression can be seen as a way of combining them.

Mattern [17] proved that if instead of using plain probabilities

as input, we use stretched probabilities (inverse logistic func-

tion), that logistic mixing is optimal in the sense of minimizing

Kullback–Leibler divergence, or wasted coding space, of the

input predictions from the output mix. Stretching the input

probabilities makes logistic regression a form of geometric

weighting instead of linear weighting:

where xj,i is a probability becomes

where tj,i = ln

(

xj,i

1−xj,i

)

 and the update formula for minimizing

the relative entropy could be written:

Coming back to our case, we ask the question: where

does the predictive power of an ensemble come from?

Where does this information lay, in the aggregating

(11)
Index low =

[

p ∗ Np

]

, Index high =

[

p ∗ Np

]

+ 1

(12)�0 + �1x1,i + �2x2,i +⋯ + �
k
x

k,i

(13)�0 + �1t1,i + �2t2,i +⋯ + �ktk,i

(14)�j = �j + � tj(yi − pi)

Fig. 2 a Uniform distribution of points; b non-uniform distribution of points

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

A
u

th
o

r
 P

r
o

o
f

U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : Large 10044 Article No : 808 Pages : 13 MS Code : PAAA-D-18-00135 Dispatch : 29-3-2019

 Pattern Analysis and Applications

1 3

algorithm or the individual components? It is obvious that

if we use a form of logistic regression, the set of weights

carries some information. It can be argued if that more

weights are somehow added to the aggregating algorithm,

it would be beneficial to its predictive power.

To some extent following this, an algorithm that adds

more layers of logistic regression is the context mixing

algorithm. The algorithm has been successfully applied in

state-of-the-art data compression programs like PAQ [18]

and cmix [19], which rank first in most text and general

data compression benchmarks for their compression ratio.

The algorithm works in the following way:

• Instead of mixing the input probabilities with only one

set of weights, create a number N of buckets of sets of

weights

• Choose one set of weights from each of the N buckets

according to a function of context

• Applying logistic regression with each set of weights

will result in N probabilities, which will be mixed by

another set of weights chosen from its own bucket.

One could underline that some information regarding

context is passed to the mixing ensemble, hence the name

context mixing. If instead we want to move the mixing

information from the ensemble toward the weak learners,

we need to take into consideration the following: How

to pass information back to the learners? We made little

assumptions so far about the value of vi. We know that

the value comes from a big bucket of entries, where its

index is dependent on the context. In a regression sense,

the feature is the context, not vi. We interpret this value

like vi= βi+ ti, where ti is a stretched probability for the

context value and β is the weight of the probability in the

ensemble. Averaging the memory values:

which itself is a stretched probability. Applying the sigmoid

function converts this average back into a probability.

4.2 The proposed model update

To update the model, we propose dual objective

minimization:

• Minimize the error with respect to the output of the entire

network

• Minimize the error with respect to the output of the indi-

vidual node

(15)
k

n

n
∑

i=0

�
i
t
i

An important remark here is that we can update the model

from a supervised learning point of view or from a rein-

forcement learning point of view. Supervised learning means

that we know the precise probability for the case we were

predicting, and we use that for backpropagation. Reinforce-

ment learning means we do not know the exact probability

for the case and do not even know how to obtain it, but

instead we rely on maximizing a cumulative reward in an

on-line manner, given the interaction with the environment.

In our case, instead of backpropagating a probability, we can

use the binary outcome instead and try to minimize either

the cumulative logistic loss or the cumulative square loss

(Fig. 3).

Working with stretched probabilities for logistic regres-

sion results in the global update error to be:

for minimizing logistic loss, or

for minimizing the square loss, where Eg is the global error,

βg is the global error learning rate, p is the output probability

and y is the information available as ground truth, that can

be a binary outcome or a probability.

After computing the global error, we proceed in comput-

ing local errors for each memory value and updating them.

The local error is deined as:

for minimizing logistic loss, or

(16)Eg = �g(p − y)

(17)Eg = �g(p − y)p(1 − p)

(18)El = �l(pi − y) with pi = �(vi)

(19)El = �l(pi − y)pi(1 − pi) with pi = �(vi)

Fig. 3 Block scheme for the proposed update algorithm

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

A
u

th
o

r
 P

r
o

o
f

U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : Large 10044 Article No : 808 Pages : 13 MS Code : PAAA-D-18-00135 Dispatch : 29-3-2019

Pattern Analysis and Applications

1 3

for minimizing the square loss, where El is the local error, βl

is the local error learning rate, pi is the output probability for

the ith context (side prediction), computed as the sigmoid of

the memory value vi, and y is the ground truth.

Each memory value is then updated by subtracting both

the local and the global errors:

It is important to notice that the global error is computed

using the output probability which was reined by the adap-

tive probability map. This is not mandatory, but our tests

show better results when the reined probability is used. This

can be seen as allowing the model to learn something that

can be corrected.

Updating the adaptive probability map works in the fol-

lowing way: the point values for index high and index low

are adjusted to reduce the prediction error. Error for index

low is

the error for index high is

where y is the ground truth available. Of course, variations

of this can be applied, such as updating only the closest

value.

Compared with the logistic regression, this method does

not update the weights of the mixture, since the combining

function is not a dot product, but it updates directly the val-

ues which participate in the average.

It is still a form of ensemble learning, particularly ensem-

ble averaging, where the elements of the ensemble here are

the memory values. The ensemble error is the global error.

One can argue that this method is similar to boosting,

regarding the fact that each side prediction is a weak learner,

and the output after mixing is the strong learner. Depend-

ing on the memory implementation chosen, which will be

discussed in the next chapter, additional and possible longer

contexts with unseen data make up for the bias of shorter

contexts and can be added or evicted when accounting for

the memory size limitations. Even though the error is back-

propagated depending on the context, it also difers from

context mixing, because there is no mixing layer to separate

the context weights from the input probabilities.

5 Results

5.1 Inputs, preprocessing and processing
architecture

We implemented the contextual memory algorithm for

an edge detector application. This section describes the

(20)v
i
= v

i
− El − Eg

(21)(Points[index low] − y) ∗ (1−weight) ∗ learning rate

(22)
(

Points
[

index high
]

− y
)

∗ weight ∗ learning rate

architecture and some of the implementation details of

the application. The application is implemented in the C#

programming language, since we wanted to not restrict the

testing and usage of the application to a closed scripting

environment like MATLAB. Using a strongly typed pro-

gramming language also helps with choosing better data

structures. The source code is publicly available at the

GitHub page https ://githu b.com/AlexD oroba ntiu/Conte

xtual Memor yEdge Detec tion.

Even when talking about two-dimensional images,

color images have more layers in the dimension of the

RGB colors. Hence, three layers can go as an input for the

algorithm. These layers are preprocessed using a chain of

preprocessors. We used a Gauss ilter for eliminating the

noise in the input images. This takes the original RGB

layers as input and outputs a three-layer image. We used a

ilter of size 5 and a sigma value of 1.4.

Since the algorithm makes no assumption of the data

behind contexts, it can be beneic to include transfor-

mations of the color layers. Such transformations are

appended as other layers for the algorithm input image. We

optionally used the Sobel ilter, the Canny edge detection

algorithm and a Kirsch edge detection algorithm as input,

which take the color channels and output another layer.

This makes the inal input image to have three or more lay-

ers. Having a Canny layer, or any edge detector as input, is

a sort of domain-speciic knowledge added in the model.

The single-layer architecture takes a preprocessed

image as an input and uses a given set of color channels to

compute an output image which consists of a single-layer

grayscale image in which the pixels represent the prob-

ability that the position in the original image belongs to

an edge. The single-layer architecture combined with the

simple rays as contexts does not take into account infor-

mation about the edge being kept the same at diferent

zoom levels.

To tackle the zooming problem, the multilayer archi-

tecture behaves in this way: take the original image, apply

preprocessing, obtain the output; then take the original

image, apply the preprocessing, append the previously

obtained output as a layer, resize the image (meaning all

its layers), and use it as an input for the algorithm. If one

decides to separate the memory used by the algorithm at

diferent sizes, we have a multilayer architecture. Each

layer is trained separately starting from the largest image

and going toward resized images. An algorithm layer can

have diferent conigurations from the other layers, and

options can include the length of the longest ray, the pre-

processing done, the memory size and others. The result

of the multilayer architecture is a set of grayscale images

of varying sizes, which are called side outputs. These

side outputs are then combined (blended) using a logistic

regression layer, to form a single image. Before blending,

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

A
u

th
o

r
 P

r
o

o
f

https://github.com/AlexDorobantiu/ContextualMemoryEdgeDetection
https://github.com/AlexDorobantiu/ContextualMemoryEdgeDetection

U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : Large 10044 Article No : 808 Pages : 13 MS Code : PAAA-D-18-00135 Dispatch : 29-3-2019

 Pattern Analysis and Applications

1 3

the images are scaled to have the same size. The weights

of the logistic regression layer are also trained on the train-

ing set.

5.2 Results on Berkeley edge detection benchmark

In this chapter, we present one example of the output images

from the algorithm using image “326025.jpg” from the men-

tioned benchmark dataset along with some of the parameters

used and a short description of the diferences. We also pro-

vide an analytical evaluation of the improvements compared

to the Canny edge detection method (Fig. 4).

The global parameter values used in the tests were

βl = 0.25, βg = 0.5 and k = 2, and quantized derivative rays

have the two least signiicant bits quantized. The results for

single-layer architecture are shown in Table 1, (Table 2 and

Fig. 5).

Before computing the score for the benchmark, the output

images are subjected to a non-maximal suppression tech-

nique and subsequently to an edge thinning. This is done in

MATLAB, using an adapted version of the Piotr Dollar’s

Structured Edge Detection Toolbox, available at https ://githu

b.com/pdoll ar/edges .

The benchmark provides a tool for evaluation which

has an automated search in the space of thresholding, so

that the user feels free to leave grayscale images instead

of making the binarization himself. We compare the algo-

rithm with the well-known Canny edge detector, the recent

ID&L algorithm [10] and to the state-of-the-art deep learn-

ing algorithms HED [6], RDS [7], RCF-ResNet101-MS

[8], CED-VGG16 [20], AMH-ResNet50 [21], CASENet

[22] and CEDN [23] (Table 3).

We can clearly see from Fig. 6 that the learning is

shifted toward not taking any risks, since the better F1

score is achieved in the low threshold settings. In order to

obtain an overall better F1 score, class balancing must be

considered when applying the loss function.

We made another analytical comparison using the cross-

entropy measure. If we have two probability distributions,

we can measure the number of bits needed to identify an

event drawn from a set if a coding scheme is used using a

probability distribution other than the true distribution of

the set. Since the pixel intensities in the resulting images

can be modeled as a probability of a pixel belonging to

an edge, we can measure the cross-entropy for the output

images. We show a comparison with the Canny algorithm

for the irst 50 images in the test set of the benchmark in

Fig. 7. A better probability modeling of the true source

of the edges should have a lower cross-entropy. For the

overall set, the proposed method obtained a cross-entropy

of 6610784. In comparison, the Canny algorithm obtained

a score of 11372700. This means that our algorithm sur-

passed the Canny algorithm by a factor of 1.72.

To prove the potential of the proposed method, we also

considered the precision with respect to the threshold.

Precision is the fraction of relevant instances among the

retrieved instances. A high value represents a small rate

of false positives. Compared with the Canny algorithm,

the proposed method ofers a steady increase in precision

and a roughly constant better precision with respect to the

threshold. This can be seen in Fig. 8.

Provided the results on the three measures, we show

that the proposed algorithm has potential over the Canny

method.

6 Conclusions

The main contribution of this paper is an application

agnostic algorithm for prediction of probabilities based

on the contextual information available, where learning

can be done in an on-line fashion. More than this, it does

not impose any constraints on how to choose or model the

context. This freedom allows it to be used in many areas

Fig. 4 a Sample image from the benchmark along with b the ground truth

AQ1 AQ2

AQ3

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

A
u

th
o

r
 P

r
o

o
f

https://github.com/pdollar/edges
https://github.com/pdollar/edges

U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : Large 10044 Article No : 808 Pages : 13 MS Code : PAAA-D-18-00135 Dispatch : 29-3-2019

Pattern Analysis and Applications

1 3

such as one-dimensional data, such as text information

or data sequences, two-dimensional data, such as images,

and three-dimensional data, such as volumetric images (or

image slices which represent volumetric information). It

also allows it to be part of larger learning and prediction

structures, having loose requirements on what information

is needed for feedback.

Table 1 Some of the results for single layer

Algorithm output Description

Context model: 16 rays, max length: 8, including quantized derivative rays

Memory: direct lookup, table size 218

Loss function: square loss

Number of passes over training set: 1

Preprocess: Gauss

Context model: 16 rays, max length: 8, including quantized derivative rays

Memory: tagged lookup, table size 220

Loss function: square loss

Number of passes over training set: 1

Preprocess: Gauss

Context model: 16 rays, max length: 8, including quantized derivative rays

Memory: bucket lookup, table size 220

Loss function: square loss

Number of passes over training set: 1

Preprocess: Gauss, Canny, Kirsch

Context model: 16 rays, max length: 8, including quantized derivative rays

Memory: direct lookup, table size 220

Loss function: entropy loss, GT threshold: 63

Number of passes over training set: 1

Preprocess: Gauss, Canny, Kirsch

632

633

634

635

636

637

638

A
u

th
o

r
 P

r
o

o
f

U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : Large 10044 Article No : 808 Pages : 13 MS Code : PAAA-D-18-00135 Dispatch : 29-3-2019

 Pattern Analysis and Applications

1 3

In order to demonstrate the usefulness of the method,

a 2D edge detection application using the method was

implemented. The results are promising, considering that

no prior handcrafted knowledge has been added in the

model to help with the prediction.

Allocating too much memory and more training passes

over the training set leads to overitting. The algorithm

will learn by heart the training set and will reproduce

meticulously the ground truth, but the quality of the results

Table 2 Some of the results for multilayer architecture

Algorithm output Description

Context model: 16 rays, max length: 8, including quantized derivative rays

Memory: direct lookup, table size 218

Loss function: square loss, GT threshold: 63

Number of passes over training set: 1

Preprocess: Gauss, Canny, Kirsch

Layers scale: 1, 2, 4, 8, 16

Context model: 16 rays, max length: 8, including quantized derivative rays

Memory: bucket lookup, table size 219

Loss function: entropy loss, GT threshold: 63

Number of passes over training set: 1

Preprocess: Gauss

Layers scale: 1, 3, 5, 7

Context model: 16 rays, max length: 8, including quantized derivative rays

Memory: bucket lookup, table size 219

Loss function: entropy loss, GT threshold: 63

Number of passes over training set: 1

Preprocess: Gauss, Canny

Layers scale: 1, 3, 5, 7

Context model: 16 rays, max length: 8

Memory: bucket lookup, table size 219

Loss function: entropy loss, GT threshold: 63

Number of passes over training set: 1

Preprocess: Gauss, Canny, Kirsch

Layers scale: 1, 3, 5, 7

639

640

641

642

643

644

645

646

647

A
u

th
o

r
 P

r
o

o
f

U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : Large 10044 Article No : 808 Pages : 13 MS Code : PAAA-D-18-00135 Dispatch : 29-3-2019

Pattern Analysis and Applications

1 3

on the test set will downgrade. We do not propose any

solution to the overitting problem in this paper.

In the future, we intend to develop more in the direction

of contextual modeling, which means exploring the space

of choosing the appropriate contexts for various applica-

tions. We would also like to extend the existing applica-

tion for three-dimensional images and apply it for medi-

cal image segmentation. Some of the changes needed to

make when switching from 2D to 3D will be to model 3D

contexts, which can be chosen as rays in three dimensions

instead of two. Also, centerline and segmentation bench-

marks have diferent intended objectives, so the feedback

mechanism and the output metrics will have to be adapted

to obtain results relevant to those benchmarks.

In order to improve the existing application, the follow-

ing can be implemented:

• Replace the loss function with a cost-sensitive loss

function, as described in [13], because the distribution

of edge/non-edge pixels in the benchmark is biased

90% in favor of non-edges

• Model rays as individual blocks, whose output will be

combined using a context mixing layer. This means each

ray will output a probability, and the set of probabilities

will be further combined into a single probability

• Replace the blending algorithm with an improved context

mixing layer, maybe even with a fully connected layer

such as in CNNs

• Add more convolutional layers as input, having a set of

learnable ilters

• Add the output of the state-of-the-art edge detectors as

input layers, to see how the algorithm balances the preci-

sion and recall

• Implement a GPGPU version of both the single and mul-

tilayer algorithm

• Adapt the training phase to iterate over transformed ver-

sions of the input images, such as rotations and scaling,

to gain more training data

• Exclude unconvincing ground truth data, when less than

a half of the human subjects agree to the edge position

• Last but not least, design space exploration with respect

to the parameters

Integrating with the relaxed deep supervision [7] algo-

rithm should provide interesting results, since algorithm

provides high precision on lower thresholds. We also expect

the proposed network to integrate well with a deep learning

architecture, especially with a CNN network, as a layer after

the rectiied linear units (ReLU) layer, side by side with the

fully connected layer.

Fig. 5 Output example after NMS and thinning

Table 3 Comparative results

Algorithm F1 score Precision Recall Threshold

Canny 0.583 0.500 0.698 0.33

ID&L [10] 0.610 0.590 0.680 N/A

Contextual memory (pro-

posed)

0.640 0.605 0.686 0.19

CASENet [22] 0.767 N/A N/A N/A

HED [6] 0.787 0.803 0.772 0.46

RDS [7] 0.792 N/A N/A N/A

CED-VGG16 [20] 0.794 N/A N/A N/A

AMH-ResNet50 [21] 0.798 N/A N/A N/A

CEDN [23] 0.788 N/A N/A N/A

RCF-ResNet101-MS [8] 0.819 N/A N/A N/A

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

A
u

th
o

r
 P

r
o

o
f

U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : Large 10044 Article No : 808 Pages : 13 MS Code : PAAA-D-18-00135 Dispatch : 29-3-2019

 Pattern Analysis and Applications

1 3

Fig. 6 F1 score plotted against

threshold

Fig. 7 Cross-entropy for the irst 50 images of the dataset (lower is better)

A
u

th
o

r
 P

r
o

o
f

U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : Large 10044 Article No : 808 Pages : 13 MS Code : PAAA-D-18-00135 Dispatch : 29-3-2019

Pattern Analysis and Applications

1 3

References

 1. Gaonkar B, Hovda D, Martin N et al (2016) Deep learning in the

small sample size setting: cascaded feed forward neural networks

for medical image segmentation. Proc SPIE 9785:97852I

 2. Milletari F, Navab N, Ahmadi S (2016) V-Net: fully convolutional

neural networks for volumetric medical image segmentation. In:

IEEE fourth international conference on 3D vision, pp 565–571

 3. Fram JR, Deutsch ES (1975) On the quantitative evaluation of

edge detection schemes and their comparison with human per-

formance. IEEE Trans Comput C-24:6:616–628

 4. Arbelaez P, Maire M, Fowlkes C, Malik J (2011) Contour

detection and hierarchical image segmentation. IEEE TPAMI

33(5):898–916

 5. Dollár P, Zitnick LC (2015) Fast edge detection using structured

forests. IEEE Trans Pattern Anal Mach Intell 37(8):1558–1570

 6. Xie S, Tu Z (2017) Holistically-nested edge detection. Proc IEEE

Int J Comput Vis 125(1):3–18

 7. Liu Y, Lew MS (2016) Learning relaxed deep supervision for

better edge detection. In: IEEE conference on computer vision

and pattern recognition (CVPR), pp 231–240

 8. Liu Y, Cheng MM et al (2019) Richer convolutional features for

edge detection. In: IEEE transactions on pattern analysis and

machine intelligence; http://mftp.mmche ng.net/Paper s/19Pam

iEdge .pdf. Accessed 05 Nov 2018

 9. Fu F, Wang C et al (2018) An improved adaptive edge detec-

tion algorithm based on Canny. In: Proceedings of SPIE 10827

icOPEN. Accessed 24 Jul 2018

 10. Guadaa C, Edwin Zarrazolab et al (2018) A novel edge detec-

tion algorithm based on a hierarchical graph-partition approach.

J Intell Fuzzy Syst 34:1875–1892

 11. Minka T (2017) A comparison of numerical optimizers for logis-

tic regression. https ://tmink a.githu b.io/paper s/logre g/minka -logre

g.pdf. Accessed 05 Feb 2017

 12. Naftaly U, Intrator N, Horn D (1999) Optimal ensemble averaging

of neural networks. Netw Comput Neural Syst 8:3

 13. Liu Y, Yao X (1999) Ensemble learning via negative correlation.

Neural Netw 12(10):1399–1404

 14. Long PM, Servedio RA (2010) Random classification noise

defeats all convex potential boosters. Mach Learn 78(3):287–304

 15. http://www.burtl eburt le.net/bob/hash/doobs .html. Accessed 05

Feb 2017

 16. http://www.isthe .com/chong o/tech/comp/fnv/index .html.

Accessed 05 Feb 2017

 17. Mattern C (2012) Mixing strategies in data compression. In: Pro-

ceedings of the 22nd data compression conference (DCC), pp

337–346

 18. Mahoney M (2005) Adaptive weighing of context models for loss-

less data compression. http://mattm ahone y.net/dc/cs200 516.pdf.

Accessed 05 Feb 2017

 19. http://www.byron knoll .com/cmix.html

 20. Wang Y, Zhao X et al (2018) Deep crisp boundaries. From bound-

aries to higher-level tasks. arXiv preprint arXiv :1801.02439

 21. Xu D, Ouyang W et al (2017) Learning deep structured multi-

scale features using attention-gated CRFs for contour predic-

tion. In: Advances in neural information processing system, pp

3961–3970

 22. Yu Z, Feng C et al (2017) CASENet: deep category-aware seman-

tic edge detection. In: IEEE conference on computer vision and

pattern recognition (CVPR), pp 21–26

 23. Yang J, Price B et al (2016) Object contour detection with a fully

convolutional encoder-decoder network. In: IEEE conference on

computer vision and pattern recognition (CVPR), pp 193–202

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional ailiations.

Fig. 8 Precision with respect to

the threshold (bigger is better)

AQ4

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

A
u

th
o

r
 P

r
o

o
f

http://mftp.mmcheng.net/Papers/19PamiEdge.pdf
http://mftp.mmcheng.net/Papers/19PamiEdge.pdf
https://tminka.github.io/papers/logreg/minka-logreg.pdf
https://tminka.github.io/papers/logreg/minka-logreg.pdf
http://www.burtleburtle.net/bob/hash/doobs.html
http://www.isthe.com/chongo/tech/comp/fnv/index.html
http://mattmahoney.net/dc/cs200516.pdf
http://www.byronknoll.com/cmix.html
http://arxiv.org/abs/1801.02439

Journal : Large 10044 Article No : 808 Pages : 1 MS Code : PAAA-D-18-00135 Dispatch : 29-3-2019

Journal: 10044

Article: 808

Author Query Form

Please ensure you fill out your response to the queries raised below and return this form along

with your corrections

Dear Author

During the process of typesetting your article, the following queries have arisen. Please check your typeset proof

carefully against the queries listed below and mark the necessary changes either directly on the proof/online grid or in the

‘Author’s response’ area provided below

Query Details Required Author’s Response

AQ1 Figures: igures (2,7) are poor in quality as its labels are not readable. Please supply a

new version of the said igure with legible labels preferably in .eps, .tif or .jpeg format

with 600 dpi resolution.

AQ2 Please check and conirm the inserted citation of Figures 2, 3, 4 and 5 are correct. If

not, please suggest an alternative citation. Please note that Figures should be cited in

sequential order in the text.

AQ3 Please check and conirm the inserted citation of Tables 2 and 3 are correct. If not,

please suggest an alternative citation. Please note that Tables should be cited in

sequential order in the text.

AQ4 Please provide the Accessed date for reference [19].

A
u

th
o

r
 P

r
o

o
f

