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Abstract The paper presents an improved context-based
denoising method for gray scale images affected by impulse
noise. The proposed algorithm is using Markov chains to
replace the detected noise with the intensity having the high-
est number of occurrences in similar contexts. The context of
a noisy pixel consists in its neighbor pixels and is searched
in a larger but limited surrounding area. We have analyzed
different search methods and different context shapes. The
experimental results obtained on the test images have shown
that themost efficientmodel applies the search in formof “*”
of contexts in form of “+”. Besides the better denoising per-
formance obtained on all the noise levels, the computational
time has been also significantly improved with respect to our
previous context-based filter which applied full search of full
context. We have also compared this improved Markov fil-
ter with other denoising techniques existing in the literature,
most of them being significantly outperformed.

Keywords Context-based filtering · Markov chain ·
Denoising · Impulse noise · Salt-and-pepper noise

1 Introduction

As digital images are affected by noise during their acquisi-
tion or transfer, we are proposing a context-based method to
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eliminate salt-and-pepper noise from gray scale images, with
an improved prediction scheme based on Markov chains.
Salt-and-pepper is an impulse noise, consisting in white and
black pixels altering the image. Our main goal is to restore
the missing information and to preserve the unaffected pix-
els. In this respect, we are replacing the noisy pixel with the
intensity having the highest number of occurrences in similar
contexts within a limited surrounding area, like in a Markov
chain. By using context information, our proposed filter can
rebuild details in images altered by salt-and-pepper noise. In
our previous work [1], we have applied a complete search
in the limited surrounding area of the context, consisting in
all the neighbor pixels. In this paper, we have continued our
research by studying different search methods and different
context shapes.

For validation, we have compared our technique with
several denoising methods from the current literature, by
measuring themean square error (MSE) on somewell-known
test images like “Cameraman”, “Boat” and “Airplane”. The
experiments have shown that our Markov filter significantly
outperforms many existing impulse noise filters.

Further, we present some existing related denoising tech-
niques. The median filter is one of the most employed
methods to reduce impulse noise, with the drawback of
being suitable only for low noise levels. Therefore, dif-
ferent improved median filter variants have been proposed
over the years, which worked better on high noise densities.
In [2], Srinivasan and Ebenezer proposed a decision-based
method, which applies a 3 × 3 denoising window only on
black and white pixels. In [3], the authors have introduced
another median filter-based method, which relaxes the order
statistic for intensity substitution. The authors of [4] have pre-
sented the progressive switching median filter, which applies
through several iterations an impulse noise detection algo-
rithm and filtering.
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In [5], the authors have introduced a two-level noise-
adaptive fuzzy switchingmedian filter. It identifies in the first
stage the noisy pixels based on a histogram and replaces in
the second stage the noisy pixels with the median of uncor-
rupted pixel values, applying also fuzzy reasoning. In [6]
and [7], Chan et al. presented a two-stage scheme, using a
median filter to identify pixels contaminated by noise and a
specialized regularization method to restore the noisy pix-
els, by minimizing an objective function. In [8], the authors
introduced an adaptive progressive filtering technique, which
detects corrupted pixels based on two-dimensional geomet-
ric and size features of the noise. Based on the result of the
first stage, an adaptively sized and shaped filtering window
(which in our work is fixed sized and shaped) is employed
in the second stage. Another two-stage scheme has been pre-
sented in [9] by Nasri et al., with noise detection in the first
stage and adaptive Gaussian filtering in the second stage.
The pixels detected as being noisy are stored in a binary
noise matrix. The uncorrupted pixels from a fixed-size win-
dow are weighted by a Gaussian function. Then the denoised
pixel intensity is computed as the normalized sum of these
weighted values.

The main difference between the above-described meth-
ods and our denoising scheme is that we use context informa-
tion and therefore we can reconstruct better the details in the
corrupted images. OurMarkov filter could be also applied for
defect detection, as in [10]. Other context-based filters have
been also proposed. In [11], the authors suggested a proba-
bilistic filter which, based on random walks on small image
neighborhoods, can provide a good denoised estimation for
a given pixel. In their work, the neighborhood dimension
and shape are adjusted run time. In our work, we use a fixed
sized and shaped neighborhood and we search for similar
neighborhoods. We replace a pixel affected by noise with the
most frequent intensity occurred in similar neighborhoods.
In [12], the authors presented a probabilistic denoising tech-
nique consisting in Markov chain Monte Carlo sampling.
A method employing a dissimilarity measure for the local
neighborhood of the noisy pixel was presented by Berkovich
et al. [13]. The content-based kernel uses a statistical model
to exclude dissimilar intensities from the weighted average.
The kernel was adjusted to the image content to preserve the
edges or textures.

Universal filtering algorithms, which can be used on dif-
ferent types of noise, have been also proposed. Besides the
very common impulse noise, aPoisson typenoise distribution
was analyzed by Mishra et al. [14]. This variety of noise is
present especially in medical X-ray imaging and affects low
intensity regions. A modified version of the Bilateral Filter
was introduced, followed by a performance comparison. In
[15], Smolka and Kusnik presented a robust local similarity
filter to reduce mixed Gaussian and impulse noise from the
affected images. In order to determine the distortion level of

a pixel, they compute the similarity of the pixels from the
processing region and a small filtering window centered on
the pixel being restored, as a sum of the smallest distances.

The denoising operation is generally affecting areas with
discontinuities, producing an unwanted smoothing effect.
In the paper of Rouf and Ward [16], the fact that chro-
matic discontinuities have lower gradients than luminance
was used in order to restore image areas affected by noise.
The method can be employed to recover deleted information
and improve the denoising process. In the same direction, the
sorted switching median filter presented in [17] is a three-
stage filtering process that classifies the pixels and avoids
the smoothing effect on uncorrupted areas. The multistage
filtering process has been also employed by Liu et al. [18],
with a new statistical process called ROD-ROAD and a fuzzy
logic rule for the pixel classification at first, followed by a
weighted mean filtering.

In [19], Bingham and Mannila used random projection
as dimensionality reduction tool on high-dimensional image
or text data sets and concluded that random projection is a
promising alternative for noise reduction.

The rest of the paper is organized as follows: Sect. 2
describes the proposed Markov filter. Section 3 presents
the experimental methodology, whereas Sect. 4 the results.
Finally, Sect. 5 summarizes the conclusions and suggests fur-
ther work opportunities.

2 Filtering impulse noise images with Markov
chains

Markov chains can be applied to compute the probability of
a certain value in a sequence, as its number of occurrences
in a considered context. Markov chains have been used in
different computer science fields like bioinformatics [20],
web access mining [21], pervasive computing [22], image
retrieval [23], computational linguistics [24]. In an Rth order
Markov model, the probability of the current state is com-
puted based on R previous states [25], as follows:

P[qt |qt−1, qt−2 , . . .] = P[qt |qt−1, . . . , qt−R] (1)

where qt is the state at time t and R is the order of theMarkov
chain. A general prediction algorithm with Markov models,
determining the next state of a 1D sequence based on the
transition frequencies from the current state, was described
in [26].

In [1],we reconstructed the gray scale images corrupted by
impulse noise using Markov chains adapted for pixel inten-
sities from 2D areas. The probability of pixel intensity in
a certain context is computed as the number of its occur-
rences in similar contexts. The noisy pixel must be replaced
with the predicted next state. The surrounding pixel values
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constitute the context, and the search area is encoding the pre-
vious states. Thus, in gray scale images, the states are pixel
intensities from the [0, 255] interval. The adjusted Rth order
Markov model is given in (2), where CS is the context size
(the width of the context square, as it is depicted in Figs. 1
and 2), SR is the search radius (used to limit the search area),
and W and H specify the image width and height. A certain
pixel intensity qx,y depends on the neighbor context intensi-
ties. We have considered noisy the black and white pixels, as
in [2].

P[qx,y
∣
∣qx+i,y+ j , i, j = −SR, . . . , SR , 0 ≤ x

+ i < W, 0 ≤ y + j < H, without i = j = 0]
= P[qx,y | qx+i,y+ j , i, j = −CS

2
, . . . ,

CS

2
, 0 ≤ x

+ i < W, 0 ≤ y + j < H, without i = j = 0] (2)

P[qx,y
∣
∣qx,y+ j , j = −SR, . . . , SR , 0 ≤ y

+ j < H, without j = 0;
qx+i,y, i = −SR, . . . , SR, 0 ≤ x + i < W, without i = 0;
qx+k,y+k, k = −SR, . . . , SR, 0 ≤ x + k < W, 0 ≤ y

+ k < H, without k = 0;
qx−l,y+l , l = −SR, . . . , SR, 0 ≤ x − l < W, 0 ≤ y

+ l < H, without l = 0]
= P[qx,y | qx,y+ j , j = −CS

2
, . . . ,

CS

2
, 0 ≤ y

+ j < H, without j = 0 ;
qx+i,y, i = −CS

2
, . . . ,

CS

2
, 0 ≤ x

+ i < W, without i = 0] (3)

The adjusted Markov filter given in (2) is depicted in Fig. 1,
where the noisy pixel N is coloredwith black, the context pix-
els C are dark gray, and the search area is light gray. A noisy
pixel is replaced with the most frequent noise-free intensity
occurred in similar contexts within a larger surrounding area
limited by SR (without leaving the image boundaries). As it
can be observed in Fig. 1, in [1], we have applied a full search
within the search area (limited by SR) of a full context con-
sisting in all the neighboring pixels. Further, we denote that
filter S0_C0.

In this work, we have investigated other simpler search
rules and also different simpler context shapes. The goal is to
improve the denoising performance and speed of the context-
based filter. We tried to replace the full search (used in [1])
with a search in form of “+”, “X” and also their combination
in form of “*”. We tried also to replace the full context (used
in [1]) with different context shapes: the context in form of
“+”, “X” and their combination in form of “*”.

The most efficient combination (determined on the test
images), search in form of “*” of contexts in form of “+”, is

Fig. 1 Image denoising with the S0_C0 Markov filter

Fig. 2 Image denoising with the S∗_C+ Markov filter

given in (3). This Markov filter is denoted S∗_C+. Although
equation (3) seemsmore complicated than (2), in fact it is sig-
nificantly simpler because it implies processing fewer pixels
and thus we expect a faster filtering. We will also evalu-
ate comparatively (2) and (3) and other variants in terms
of denoising performance. Figure 2 presents the S∗_C+
Markov filter. The considered context pixels are highlighted
with dark gray (forming a “+”) and the search rule with light
gray (forming an “*”).
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Obviously, we have implemented and tested all the fol-
lowing combinations in which S denotes the search type and
C the context type: S0_C0 from [1], and from this work
S0_C+, S0_CX , S+ _C0, S+ _C+, S+ _CX , SX_C0,
SX_C+, SX_CX , S∗_C+.

The algorithm which replaces a noisy pixel through the
S∗_C+ Markov model is described in the following pseu-
docode:

Q[Color(i, j)]:=Q[Color(i, j)]+1
For k:=-SR to SR, 0≤x-k<W, 0≤y+k<H

If k=0 then Continue
i:=x-k 
j:=y+k
If SAD(x, y, i, j, CS)<T 

AND NOT Salt_Pepper(i, j) then 
Q[Color(i, j)]:=Q[Color(i, j)]+1

If Q[Max(Q)]=0 then Return Color(x, y)
Return Max(Q)

Markov(x, y, SR, CS, T)
For j:=y-SR to y+SR, 0≤j<H

If j=y then Continue
If SAD(x, y, x, j, CS)<T 

AND NOT Salt_Pepper(x, j) then 
Q[Color(x, j)]:=Q[Color(x, j)]+1

For i:=x-SR to x+SR, 0≤i<W 
If i=x then Continue
If SAD(x, y, i, y, CS)<T 

AND NOT Salt_Pepper(i, y) then 
Q[Color(i, y)]:=Q[Color(i, y)]+1

For k:=-SR to SR, 0≤x+k<W, 0≤y+k<H
If k=0 then Continue
i:=x+k
j:=y+k
If SAD(x, y, i, j, CS)<T 

AND NOT Salt_Pepper(i, j) then 

Theparameters of theMarkov function are: the line and the
column of the current pixel, the search radius SR, the context
sizeCS and the similarity threshold value T . The first two for
instructions are performing the “+” search and the last two
the “X” search for similar contexts. These two search rules
used together constitutes the “*” search. We considered two
image areas similar if the sum of absolute differences is less
than T .

The following pseudocode presents how we compute the
similarity degree in the S∗_C+ Markov filter, the context
having a “+” shape:

SAD(x1, y1, x2, y2, CS)
S:=0
For j:= -CS/2 to CS/2, 0≤j+y1<H, 0≤j+y2<H do

If j=0 then Continue
S:=S + |Color(x1, j+y1)-Color(x2, j+y2)|

For i:= -CS/2 to CS/2, 0≤i+x1<W, 0≤i+x2<W, do
If i=0 then Continue
S:=S + |Color(i+x1, y1)-Color(i+x2, y2)|

Return S

The first for instruction is processing the pixels from the
vertical line and the second one from the horizontal line of
the “+” context shape, both avoiding the middle pixel.

The frequencies of the noise-free pixel values occurring in
similar contexts are kept in Q. TheMax function returns the
most frequent intensity which will replace the noisy pixel.

The noisy pixel is not changed if theMarkov function cannot
find any similar context. The Salt_Pepper function checks if
a pixel is noisy, by returning TRUE for black and white pix-
els. The Markov_Filter function, which calls the previously
presented Markov function, is the same as in [1] and it is
presented in the following pseudocode:

Markov_Filter(CS, SR, T)
For i:=0 to W-1 do

For j:=0 to H-1 do
If Salt_Pepper(i, j) then

Set_Color(i, j, Markov(i, j, CS, SR, T))

where the Set_Color function changes the intensity of the
noisy pixel (i , j) with the value returned by the Markov
function.

3 Evaluation methodology

The proposed Markov filter was implemented in C# and we
used for comparisons the available MATLAB source codes
of several filters. We performed the evaluations on the Cam-
eraman, Boat andAirplane 512×512 gray scale PNG images
having salt-and-pepper noise levels between10 and90%.The
proposed Markov filter has been configured on the Camera-
man imagewith 30%noise level and, after that, we compared
the optimal model with the other existing techniques on all
the three test images with all the noise levels.

The denoising performance has been determined using the
MSE metric whose computation is given in (4):

MSE =
∑W−1

i=0
∑H−1

j=0 (F(i, j) − O(i, j))2

W · H (4)

where W and H are the image width and height. The goal is
to obtain the MSE as low as possible.

4 Evaluation results

First, we have checked again the SR and CS parameters and
the optimal values are the same as in [1]:CS = 3 and SR = 4.
The optimal value of T for a full context was 500 in [1].
Since the number of pixels is reduced to the half in the “+”
and “X” contexts, we expect a reduction of the optimal T to
around 250 in the filters implying such contexts. In Fig. 3, we
havemeasured theMSEby varying the similarity threshold T
around the expected optimal value. For this first parametrical
setup, we have chosen the S+ _C+ Markov filter and the
Cameraman test image with 30% noise.

Figure 3 has shown that in the case of a “+” context the
best value for T is 300. Aswe checked, for an “X” context the
best T value is the same, which is obvious, since it implies
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the same number of pixels. Further, we will use T = 500 for
a full context and T = 300 for the “+” and “X” contexts.

Next, we have compared different search rule and context
shape combinations. The MSE values obtained on the Cam-
eraman, Boat and Airplane images are presented in Figs. 4, 5

582,09

227,87
158,97 183,87 208,8

0

100

200

300

400

500

600

700

T=200 T=250 T=300 T=350 T=400

M
SE

Fig. 3 MSE of the 30% noised Cameraman image filtered with
S+ _C+ using different similarity thresholds

and 6, respectively. Since S0_CX was less performing than
S0_C+ and also SX_C0 was less performing than S+_C0,
we have checked but not included the othermodels that imply
“X” search or “X” contexts (S+_CX , SX_CX and SX_C+)
in these figures.

As Figs. 4, 5 and 6 show, the S∗_C+ is the best Markov
filter on all the three test images. Thus, even if an “X” search
is less performing than a “+” search, their combination into
“*” search provides the best results. The proposed S∗_C+
model is significantly outperforming the initial S0_C0 filter
from [1], on all the noise levels. The denoising speed also
decreased on all noise levels. As Table 1 shows, the S∗_C+
Markov filter is about four times faster than S0_C0.

The second best model is S+ _C+, which is outperform-
ing the initial S0_C0 on the Cameraman and the Airplane
images, but it is worse on Boat with noise between 40 and
80%.

Fig. 4 MSE of the Cameraman
image denoised with different
Markov models
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Fig. 5 MSE of the Boat image
denoised with different Markov
models

0
500

1000
1500
2000
2500
3000
3500
4000

10 20 30 40 50 60 70 80 90

Noise Level [%]

M
SE

S*_C+

S0_C0

S+_C+

S0_C+

S0_CX

S+_C0

SX_C0

Fig. 6 MSE of the Airplane
image denoised with different
Markov models
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Table 1 Comparison of the
computation times in seconds

Noise density (%) Cameraman Boat Airplane

S0_C0 S∗_C+ S0_C0 S∗_C+ S0_C0 S∗_C+
10 9.38 2.29 10.63 2.63 10.51 2.41

20 18.27 4.33 19.92 4.80 18.68 4.48

30 26.56 6.27 27.88 6.74 26.64 6.39

40 33.08 7.91 35.30 8.45 33.90 8.08

50 40.02 9.49 41.87 9.96 41.00 9.68

60 46.76 10.97 48.28 11.32 47.69 11.13

70 53.21 12.45 54.43 12.59 53.81 12.50

80 59.60 13.79 60.00 13.82 59.64 13.71

90 65.95 14.88 66.51 14.84 66.38 14.82

Fig. 7 Comparing the MSE on
the Cameraman image denoised
with different existing methods
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Fig. 8 Comparing the MSE on
the Boat image denoised with
different existing methods
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Fig. 9 Comparing the MSE on
the Airplane image denoised
with different existing methods
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Further, we have compared this best S∗_C+Markov filter
with other existing filters: our previous context-based pre-
diction filter (CBPF) [1], the noise-adaptive fuzzy switching
median filter (NAFSMF) [5], the decision-based algorithm

(DBA) [2], the median filter (MF), the progressive switching
median filter (PSMF) [4], the relaxedmedian filter (RMF) [3]
and the analysis prior algorithm (APA) [27], whose source
codes were available. Figures 7, 8 and 9 are presenting com-
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Fig. 10 Denoising the Cameraman image having 60% noise (a) using the S∗_C+ Markov filter (b), CBPF (c), NAFSM (d), DBA (e), MF (f),
PSMF (g), RMF (h), APA (i)

paratively the MSE for all the considered methods on the
Cameraman, Boat and Airplane test images.

Figures 7, 8 and 9 show that the proposed S∗_C+Markov
filter is better than the MF, PSMF, RMF and CBPF on all the
noise levels. It is also better than APA on noise densities up
to 30%. It is just slightly worse than the NAFSMF and DBA.

Figure 10 shows the Cameraman image having 60% salt-
and-pepper noise (a) and the outputs obtained with our pro-
posed S∗_C+ Markov filter (b), as well as using CBPF (c),
NAFSM (d), DBA (e), MF (f), PSMF (g), RMF (h), APA (i).

As Fig. 10 depicts, our proposed S∗_C+ Markov filter is
better than the CBPF,MF, PSMF, RMF and APA techniques.
We can observe again that the quality of the image denoised
with the S∗_C+ Markov filter is very close to the quality of
the images filtered with NAFSM and DBA.

5 Conclusions and further work

In this work, we have improved a context-based filter pro-
posed in [1], to denoise gray scale images corrupted by
impulse noise.Our filter is usingMarkov chains to replace the
noisy pixel with the pixel value having the highest number of
occurrences in similar contexts. The context of a noisy pixel
consists in its neighbor pixels and is searched in a larger but
limited surrounding area. The original contribution of this
paper consists in analyzing different search rules and differ-
ent context shapes.

We have replaced the full search used in [1] with a search
in form of “+”, “X” and also their combination in form of a
“*”. We have also replaced the full context used in [1] with
different context shapes: “+”, “X” and “*”. The MSE results
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obtained on the Cameraman, Boat and Airplane test images
show that the most efficient model is the proposed S∗_C+
Markov filter which applies the search in form of “*” of
contexts in form of “+”. This filter is better than our previous
CBPF on all the noise levels, but also than the MF, PSMF,
RMF and partially than APA and it is just slightly worse than
the NAFSMF andDBA denoisingmethods. Beside the better
denoising performance, the computational time has been also
significantly improved with respect to the previous CBPF.
The context information is a great advantage of our method,
whereas the computational time, despite it was significantly
improved, is still a slight disadvantage compared with some
existing techniques.

A further work direction could try to adjust dynamically
the search radius or the context size. Other research direc-
tions are the run-time computation of the similarity threshold
proportionally with the context size and the utilization of the
Markov filter together with fuzzy and neural techniques.
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